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ABSTRACT 

A subset D of the vertex set V (G) of a graph G is said to be a dominating set if every vertex 

not in D is adjacent to at least one vertex in D. A dominating set D is said to be an eccentric 

dominating set if for every  v ∈ V − D, there exists at least one eccentric point of  v in D. An 

eccentric dominating set  D of G is a nonsplit  eccentric dominating set if the induced sub graph 

< V −D > is connected. The minimum of the cardinalities of the nonsplit eccentric dominating 

sets of G is called the nonsplit eccentric domination number γnsed(G). In this paper, we have 

studied the changing and unchanging of  Nonsplit eccentric domination number in graphs. 
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1 Introduction  

Let G be a finite, simple, undirected graph on n vertices with vertex set V (G) and edge set 

E(G). For graph theoretic terminology refer Harary [5], Buckley and Harary [1]. The concept of 

distance in graphs plays a dominant role in the study of structural properties of a graph in 

various angles using related concept of eccentricity of vertices in graphs. The study of 

structural properties of graphs using distance and eccentricity started with the study of center of 

tree and propagated in different directions in the study of structural properties of graph such as 

unique eccentric point graphs. K-eccentric point graphs, self centered graphs. Let G be a 

connected graph and u be a vertex of G. The eccentricity e(v) of v is the distance to a vertex 

farthest from v. Thus e(v) = max{d(u, v) : u ∈ V }. The radius r(G) is the minimum eccentricity 

of the vertices, whereas the diameter diam(G) is the maximum eccentricity. For any connected 

graph G, r(G) ≤ diam(G) ≤ 2r(G). The vertex v is a central vertex of G if e(v) = r(G). The center 

C(G) is the set of all central vertices of G. The central subgraph < C(G) > of a graph G is the 

subgraph induced by the center. The vertex v is a peripheral vertex if e(v) = diam(G). The 

periphery P(G) is the set of all peripheral vertices of G. For a vertex v, each vertex at a distance 

e(v) from v is an eccentric vertex of v. Eccentric set of a vertex v is defined as E(v) = {u ∈ V 

(G) : d(u, v) = e(v)}. The open neighborhood N(u) of a vertex u is the set of all vertices 

adjacent to v in V . N[u] = N(u) ∪ {u} is called the closed neighborhood of u. For a vertex u ∈ 

V (G), Ni(u) = {u ∈ V (G) : d(u, v) = i} is defined to be the i th neighborhood of u in G. The 

concept of domination in graphs was introduced by Ore [8] and Cockayne et al. studied various 

bounds and results to domination in [4]. A set D ⊆ V is said to be a dominating set of G, if 

every vertex in V − D is adjacent to some vertex in D. 

http://www.jetir.org/


© 2019 JETIR  January 2019, Volume 6, Issue 1                             www.jetir.org  (ISSN-2349-5162) 

JETIRR006007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 46 
 

 In 2010, Janakiraman, Bhanumathi and Muthammai defined eccentric domination in graphs [6] 

and studied eccentric domination in trees [2] and various bounds of eccentric domination in 

graphs. V.R. Kulli and Janakiram introduced the concept of split and nonsplit domination 

number of a graph in 1997 [10] and in 2000 [11] Motivated by these, we have defined split and 

nonsplit eccentric domination number of graphs.The changing and unchanging terminology 

was first suggested by Harary [5]. It is useful to partition the vertex set or the edge set of a 

graph G into three sets according to how the addition of vertex (or edge) or removal of addition 

(edge) affects the domination number. 

A set D ⊆ V (G) is an eccentric dominating set if D is a dominating set of G and for every v ∈ 

V − D, there exists atleast one eccentric vertex of v in D. If D is an eccentric dominating set, 

then every superset D   ⊇ D is also an eccentric dominating set. But D   ⊆ D is not necessarily 

an eccentric dominating set. An eccentric dominating set D is a minimal eccentric dominating 

set if no proper subset D  ⊆ D is an eccentric dominating set. The eccentric domination 

number γed(G) of a graph G is the minimum cardinality of an eccentric dominating set. An 

eccentric dominating set D of G is a nonsplit eccentric dominating set if the induced subgraph < 

V − D > is connected 

The nonsplit eccentric domination number γnsed(G) of a graph G equals the minimum 

cardinality of a nonsplit eccentric dominating set. That is γnsed(G) = min |D|, where the 

minimum is taken over D in D, where D is the set of all minimal nonsplit eccentric dominating 

sets of G. 

In this paper, we have studied the changing and unchanging of the  Nonsplit eccentric 

domination number in graphs. 

2  Prior Results 

 Theorem 2.1 

 1. γed (Kn) = 1, n ≥ 3. 

 2. γed (K1,n) = 2, n ≥ 2. 

 3. γed (Wn) = 3, n ≥ 7 

. 4. γed (Km,n) = 2, n ≥ 2. 

  5. γed(Pn)  =     
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    Theorem 2.2 

   (i)   γnsed (Kn) = 1, for n ≥ 3.  

  (ii) γnsed (Km,n) = 2, for m, n ≥ 2. 

  (iii) γnsed (Cn) = n − 2, for n ≥ 3.            

 (iv) γnsed (Wn) = 3, for n ≥ 4. 

 (v) γnsed (T) = γns (T) for any tree T. 

 (vi) γnsed (Cn ◦ K1) = n for n ≥ 3. 

 (vii) γnsed (K1,n) = n, for n ≥ 2 

(viii) γnsed (Pn) = n − 2, for n ≥ 3.

 

  Theorem2. 3. 

.     Let G be a connected graph obtained from a complete graph Kn by attaching pendant edges 

at at least one of the vertices of the complete graph and not all the vertices of the complete 

graph then γnsed(G) = s + 1 for n ≥ 3, here S is the set of all pendant vertices of G and |S| = s. 

  Theorem 2.4 

 If G is a spider, then γnsed(G) = e + 1, where e is the number of pendant vertices of G.  

 Theorem2. 5 

If G is a caterpillar such that each non pendant vertex is of degree three then γnsed(G) = e, where 

e is the number of pendant vertices of G.  

Theorem 2.6 

 If G is a wounded spider, then γnsed(G) = s + e where s is the number of pendant vertices of non 

wounded legs, and e is the number of pendant vertices of wounded legs. 

 

 

 Theorem2. 7 

 If G is a unicyclic graph with p vertices and if G has an induced cycle of length (p − 1) then 

γnsed(G) = p − 2. 

Theorem2. 8 

If G is a graph obtained from a path Pp−1 by attaching one pendant vertex with any vertex of 

degree 2 of a path Pp−1 then γnsed(G) = p−2.               
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Theorem 2. 

 Let n be an even integer. Let G be obtained from the complete graph Kn by deleting edges of a 

linear factor. Then γed(G) =  
𝑛

2
 

3  Changing and Unchanging of  Nonsplit Eccentric 

Domination Number in Graphs 

In this section, a study of changing and unchanging of nonsplit eccentric domination number in 

connected graphs is initiated. 

3.1 Changing and unchanging of γnsed due to vertex removal 

If a vertex is removed from G, then the vertex lies in one of the following three 

sets. There are vertices whose removal will maintain the nonsplit eccentric 

domination number. 

Define, 

V E0
ns = {v ∈ V (G)/γnsed(G − v) = γnsed(G)} 

V E−
ns = {v ∈ V (G)/γnsed(G − v) < γnsed(G)} 

V E+
ns = {v ∈ V (G)/γnsed(G − v) > γnsed(G)}  

Theorem 3.1.1. 

1 If G is a complete graph with atleast three vertices then V = V E0
ns. 

2. Let G be a star K1,n, n ≥ 3, 

 (i) If v is a pendant vertex then v ∈ V E−
ns 

 (ii) If v is a central vertex then v ∈ V E0
ns. 

3. If G is a complete bipartite graph then V = V E0
ns for m, n ≥ 3. 

4. Let G be a path on atleast four vertices. 

 (i) If v is a pendant vertex,then v ∈ V E−
ns,  

(ii) If v is a support vertex, then v ∈ V E−
ns,  

(iii) If v is  not a pendant vertex and not a support vertex, then v ∈ V E−
ns. 

5. If G is a cycle Cn, n ≥ 3, then v ∈ V E−
ns. 

6. If G is a wheel and v is not a central vertex of G, then v ∈ V E0
ns forn ≥ 3. 

  If G is a wheel and v is a central vertex of G then v ∈ V E+
ns for n ≥ 10. 

7. If G is a corona Cn ◦ K1 (n ≥ 3), and if v is a pendant vertex of G, then v ∈ V E0 ns. 
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 Proof.  

(1) G   Kn, n ≥ 3 by Theorem 2 , γnsed(Kn) = 1. Let v ∈ V (G). Then G − v   Kn−1 and γnsed(G 

− v) = 1 = γnsed(G). Therefore v ∈ V E0 ns and hence V = V E0 ns. 

 (2) Let G   K1,n, for n > 3. By Theorem 2, γnsed(K1,n) = n. Let v ∈ V (G) be the central vertex 

then G−v = nK1, totally disconnected. Therefore γnsed(G − v) = γnsed(G). Thus v ∈ V E0 ns. Let v 

∈ V (G) be a pendant vertex. Then G − v   K1,n−1 and γnsed(G − v) = n − 1 < γnsed(G) = n. 

Therefore v ∈ V E−
ns.. 

 (3) Let G be a complete bipartite graph Km,n, where m, n ≥ 3. By Theorem 2, γnsed(Km,n) = 2. 

Let v ∈ V (G). Then γnsed(G−v) = 2 = γnsed(G). Therefore v ∈ V E0
ns and hence V = V E0

ns  

(4) Let G   Pn, n ≥ 4. By Theorem 2, γnsed(Pn) = n − 2.  

(i) If v is a pendant vertex of G, then G−v   Pn−1, γnsed(G−v) = n−3 < γnsed(G). 

Therefore v ∈ V E−
ns.  

(ii) If v is support vertex then γnsed(G − v) = 1 + (n − 2) − 2 = n − 3. Therefore γnsed(G − 

v) < γnsed(G). Hence v ∈ V E−
ns. 

(iii) If v is not a pendant and not a support vertex then  Pn1 and Pn2 be the component of 

G−v with n1+n2 = n−1 and n1 ≥ n2 ≥ 2 then γnsed(G − v) = (n1 − 2) + n2 = n1 + n2 − 2 

= n − 3 < γnsed(G). Therefore v ∈ V E−
ns. 

(5)  Let G   Cn, n ≥ 3. By Theorem 2, γnsed(Cn) = n−2. Let v ∈ V (G). Then G − v   Pn−1  and       

γnsed(G − v) = n − 3 < γnsed(G). Therefore v ∈ V E−
ns.and hence V (G) = V E−

ns.. 

(6)Let G be a wheel on (n + 1) vertices, where Wn = Cn + K1, n ≥ 10. Then by Theorem 2,   

γnsed(Wn) = 3. Let v be a vertex of Wn. 

 (a) Let v ∈ V (Cn). Then G – v   K1 + Pn−1        and γnsed(G − v) = 3 = γnsed(G) for n ≥ 3. Thus v 

∈ V E0 ns.  

(b) Let v be the central vertex of  Wn. Then G − v   Cn and γnsed(G − v) ≥ γnsed(G). Therefore 

v ∈ V E+ ns. 

 (7) Let G be the corona Cn ◦ K1 and v be a pendant vertex of G. By Theorem 2, γnsed(Cn ◦ K1) = 

n. Now, G − v is a graph obtained by attaching exactly one pendant edge at each of (n − 1) 

vertices of Cn. Then a minimum nonsplit eccentric dominating set of G−v contains all the (n − 

1) pendant vertices and a vertex of degree 2 of Cn, and hence γnsed(G − v) = n = γnsed(G). 

Therefore v ∈ V E0
ns 

Theorem 3.1.1. 

Let T be a tree such that each vertex of degree atleast 2 is a support. Then γnsed(T) = e, where 

e is the number of pendant vertices in T. Also if v is a pendant vertex then v ∈ V E−
ns ∪ V E0

ns . 

 Proof. T is a tree with each vertex of degree atleast 2 is a support, where e is the number of 

pendant vertices in T. The set of all pendant vertices forms a minimum non split eccentric 

dominating set. Thus γnsed(T) = e. Let v be a pendant vertex of T. When we remove v from T, 

γnsed(T −v) ≤ γnsed(T). Therefore v ∈ V E−
ns ∪ V E0

ns. 
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Theorem 3.1.2. 

 Let G be a spider. Then V = V E0
ns ∪ V E−

ns 

 Proof. 

 Let G be a spider, then by Theorem 2.4 γnsed(G) = s + 1, where s is the number of pendant 

vertices of G. When we remove a pendant vertex v from G, G − v is a wounded spider with one 

wounded leg, then γnsed(G − v) = s < γnsed(G), using Theorem 2.6. Therefore v ∈ V E−
ns. When 

we remove a vertex from G which is not a pendant vertex, then G−v is disconnected. G − v = 

G1 ∪ K1 where G1 is a spider with (s − 1) pendant vertices and γnsed(G1) = (s − 1) + 1. Hence 

γnsed(G − v) = ((s − 1) + 1) + 1 = s + 1 = γnsed(G). Therefore v ∈ V E0
ns. Thus V = V E0

ns ∪ V 

E−
ns 

Theorem 3.1.3. 

Let G be a caterpillar such that each non pendant vertices is of degree 3. Then V = V E0
ns ∪ V 

E+
ns ∪ V E−

ns . 

 Proof.  

Let G be a caterpillar such that each non pendant vertices is of degree 3. Then γnsed(G) = e = 
𝑝

2
+ 

1, where e is the number of pendant vertices in G. 

 Case (i): When we remove a pendant vertex v which is peripheral, γnsed(G − v) = e − 1 < 

γnsed(G). 

 Case (ii): When we remove a pendant vertex v which is not peripheral, γnsed(G − v) = e − 1 < 

γnsed(G).  

Case (iii): When we remove a vertex v of degree 3, which is not a pendant vertex, G − v is 

disconnected.  

Subcase (a): deg(v) = 3 and v is adjacent to two pendant vertices. G−v has 3 components with 

two isolated vertices. γnsed(G − v) = 
𝑝−3+1

2
+ 2 = 

𝑝+2

2
 = 

𝑝

2
 + 1 = γnsed(G). Therefore v ∈ V E0

ns  

Subcase (b): deg(v) = 3 and v is adjacent to only one pendant vertex. G−v has 3 components 

G1, G2 and G3 with one isolated vertex. Let the pendant vertices of G1 be e1 and the pendant 

vertices of G2 be e.2 Then e = e1 +e2 +1. Let e1 ≤ e2. Then G1 has (e1+e1−1) vertices and G2 has 

e2+(e2−1) vertices. Hence γnsed(G − v) = 1 + (e1 + e2 − 1) + e2 = 2e1 + e2 = e1 + (e1 + e2) = e1 + 

(e − 1) ≥ 2 + e − 1 = e + 1 > e = γnsed(G). Therefore v ∈ V E+
ns. 

 Hence in general V = V E0
ns ∪ V E+

ns ∪ V E−
ns . 

 Theorem 3.1.4. 

 Let G be a connected graph obtained from a complete graph by attaching  pendant edges at 

atleast one of the vertices of the complete graph but not all the vertices of a complete graph 

then V = V E0
ns ∪ V E−ns 
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 Proof. 

Let G be a graph obtained from a complete graph Kn by attaching pendant edges at at least one 

of the vertices of the complete graph but not attached to all the vertices of a complete graph. By 

Theorem 2.3 γnsed(G) = s + 1 where s is the set of all pendant vertices of G and |S| = s.  

Case (i): If deg(v) = 1 and v is the only one pendant vertex of G. Then G − v   Kn and γnsed(G 

− v) = 1 < γnsed(G). Hence v ∈ V E−
ns 

Case (ii):  If v is a support vertex of G. Then G − v is a disconnected graph. 

Subcase (a): G−v has Kn−1 as a component. Then γnsed(G−v) = γ(G−v) = 2. Also γnsed(G) = 2. 

Therefore γnsed(G − v) = γnsed(G). Hence v ∈ V E0
ns 

Subcase (b): G − v has a pendant vertex, s ≥ 2. In this case G − v = K1 ∪ G1, where G1 has (s − 

1) pendant vertices and γnsed(G) = s + 1. Therefore γnsed(G − v) = (s − 1) + 1 = s < γnsed(G). 

Hence v ∈ V E−
ns. 

Case (iii): Let degG(v) = 1 and let there exist t (t ≥ 2) vertices of degree 1 in G. Then G − v is a 

graph with (p − 1) vertices obtained from a complete graph by attaching (s − 1) pendant edges 

at atleast one of the vertices of the complete graph. Then γnsed(G−v) = (s−1) + 1 < γnsed(G). 

Hence v ∈ V E−
ns 

Case (iv): Let v be a vertex of the complete graph and be not a support vertex of G. Then 

degG(v) = n − 1 when n (n < p) is the number of vertices of the complete graph Kn. Since G − v 

has (p − 1) vertices and γnsed(G − v) = s + 1 = γnsed(G). Hence v ∈ V E0
ns 

 From the above cases V = V E0
ns ∪ V E−

ns 

 

3.2 Changing and unchanging of γnsed due to edge removal 

 Here, the edge set of a graph G is classified in such a way that removal of an edge affect or 

does not affect the non split eccentric domination number of G.  

Define,  

EE0
ns = {e ∈ E(G)/γnsed(G − e) = γnsed(G)} 

EE−
ns = {e ∈ E(G)/γnsed(G − e) < γnsed(G)} 

EE+
ns = {e ∈ E(G)/γnsed(G − e) > γnsed(G)}  

Clearly, E = EE0
ns ∪ EE+

ns ∪ EE−
n 

The following are the results of some special classes of graphs.   

Theorem 3.2.1 

 (i) If G is a complete graph then E = EE+
ns 
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 (ii) If G is a star K1,n, n ≥ 2, then E = EE−
ns 

 (iii) Let G be a complete bipartite graph Km,n, n ≥ m ≥ 2. Then E = EE0
ns. 

 (iv) If G is a path and e is a pendant edge then e ∈ EE0
ns 

 (v) If G is a wheel Wn, then E = EE0
ns 

 (vi) If G is a cycle then E = EE0
ns 

Proof. 

 (i)Let G   Kn. Let e ∈ E(G). Then G − e is Kn − e. Therefore γnsed(G − e) = 2 > γnsed(G) = 1. 

Hence e ∈  EE+
ns and E = EE+

ns. 

(ii) Let G   K1,n, n > 2. Let e ∈ E(G). Then G − e is a disconnected graph. Therefore γnsed(G − 

e) = n = γnsed(G). Hence e ∈ EE0
ns. Therefore E = EE0

ns 

(iii) Let G be a complete bipartite graph Km,n. Let e ∈ E(G). Then G − e   Km,n − e. Therefore 

γnsed(G − e) = 2 = γnsed(G). Hence e ∈ EE0
ns and E = EE0

ns 

(iv) Let G be path Pn, n ≥ 4. Let e be a pendant edge of Pn, n ≥ 4. Then G − e   Pn−1 ∪ K1 and 

also disconnected. By Theorem 2.2 γnsed(G−e) = ((n−1)−2)+1 = n−2. Hence e ∈ EE0
ns and E = 

EE0
ns 

(v) Let G be a wheel Wn, n ≥ 7 and Wn = Cn + K1. By Theorem 2.2 γnsed(G) = 3.  

Case (i): Let e = xy ∈ E(Cn). Then G−e   K1 +Pn. D = {xzy} is a nonsplit eccentric 

dominating set of G − e, where z is the central vertex of G. Therefore γnsed(G − e) = 3 = 

γnsed(G). Hence e ∈ EE0
ns 

Case (ii): Let e = xy ∈ E(G) be an edge joining the vertex of K1 and a vertex of Cn. Then G − e 

is a graph with radius  2 and diameter 3. Also G − e is a graph with δ(G) = 2 and ∆(G) = n − 1 

and γnsed(G − e) = 3 = γnsed(G). Hence e ∈ EE0
ns. 

From cases (i) and (ii) E = EE0
ns. 

 (vi) Let G be a cycle Cn, n ≥ 3. Let e ∈ E(Cn). Then G − e   Pn. By Theorem 2.2 γnsed(Pn) = n 

− 2 and γnsed(Cn) = n − 2. Therefore γnsed(G − e) = n − 2 = γnsed(G). Hence e ∈ EE0
ns and E = 

EE0
ns 

Theorem 3.2.2 

If G is a unicyclic graph with p vertices and G has an induced cycle of length p − 1 then 

 E = EE0
ns∪ EE+

ns 

Proof. 

 Let v1, v2, . . . , vp−1 be the vertices of G and let x be the pendant vertex of G. γnsed(G) = p − 2. 

Then by Theorem 2.7. Let us remove an edge e = uv ∈ V (G). 

 Case (i): If d(u) = 3 and d(v) = 2. Then G − e is a path Pp. By Theorem 2.2 γnsed(Pp) = p − 2. 

Therefore γnsed(G − e) = p − 2 = γnsed(G). Hence e ∈ EE0
ns. 
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 Case (ii): If d(u) = 2 and d(v) = 2. Then G − e is a graph obtained from a path Pp−1 by 

attaching one pendant vertex with any vertex of degree 2 of a path Pp−1. By Theorem 2.8 

γnsed(G − e) = p − 2 = γnsed(G). Hence e ∈ EE0
ns. 

 Case (iii): If d(u) = 1 and d(v) = 3. Then G − e is a disconnected graph. Therefore γnsed(G−e) = 

p−2+1 = p−1 > γnsed(G) = p−2. Hence e ∈ EE+
ns. From the above cases E = EE0

ns ∪ EE+
ns 
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