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Abstract— the software reliability models help in analysis of software products and they are built of some assumptions which induce a 

certain degree of unreliability also. In this paper we have investigated the most popular reliability models and presented the pitfalls of 

each model but not before discussing their operating principle as well as robustness. Our paper serves as a readymade guide to software 

quality assurance engineers to refer which model they want to consider while practicing the reliability activity during the maintenance 

phase so as to refine the models and apply them again into their needs. 

 

Index Terms—Software Reliability, Fault, Quality, Black box, White box 

 

 

I. INTRODUCTION  

     In modern era, while designing complex systems, a huge amount of functionality is delegated to software. This is done due to the fact that 

software is an intellectual product, which cannot be bounded by the limits of the physical world in the sense that the corresponding   hardware 

system would be. As software always operates in the context of a larger system, the dependability requirements on the system gets reduced to 

the software components and become the essential software depend-ability requirements. Software reliability is one of the important factors of 

software quality and system dependability. It is defined as the probability of failure-free software operation in a specified environment for a 

specified duration of time. A software failure occurs when the functionality of the software departs from its specifications, and it is the result 

of a software fault, a design defect, being produced by an input to the code during its execution. 

     Software reliability analysis is done at various stages during the process of engineering software, for a system, as an attempt to evaluate if 

the software reliability requirements have been met. The analysis results not only provide feedback to the designers but also become a measure 

of software quality. There are two activities related to software reliability analysis: estimation and prediction. In either activity, statistical 

inference techniques and reliability models are applied to failure data obtained from testing or during operation to measure software reliability. 

However, estimation is usually retrospective and it is performed to determine achieved reliability from a point in the past to the present time. 

The prediction activity, on the other hand, parameterizes reliability models used for estimation and utilizes the available data to predict future 

reliability. In general, software reliability models can be classified as being black box models and white box models. The difference between 

the two is simply that the white box models consider the structure of the software in estimating reliability, while the black box models do not 

work in that way. IN this paper, we have presented a concise description of some fundamental black box and white box software reliability 

models. In section 2, black box models and related terminology are introduced. Five models from this category: the Jelinski-Moranda de-

eutrophication model, the Goel-Okumoto non-homogeneous Poisson process (NHPP) model, the Musa basic execution time model, the 

enhanced NHPP (ENHPP) model and the Littlewood-Verrall Bayesian model, are described along with their basic assumptions, data 

requirements and model output. 

     In section 3, we investigate white box models and a high level classification of these models. Then I describe two models in this category 

that appeared in the literature in the recent past: Krishna-murthy and Mathur’s path-based model and Gokhale’s state-based model. 

     In Section 4, we have concluded the investigation with some observations. At the end we have also attempted to identify general 

shortcomings of software reliability models and suggest avenues for further, possibly fruitful, research. 

 

II. BLACK BOX SOFTWARE RELIABILTY MODELS  

In the software development process, it is very typical to end up with a product that has many design defects, i.e. faults, or generally known 

as bugs. For a certain input to the software these faults are activated, resulting in a deviation of the software behavior from its specified 

behavior i.e. a failure. When failures are detected through the testing process and the corresponding faults are located, then assuming that these 

faults are perfectly fixed, i.e. the process of fixing a fault did not introduce a new fault, software reliability increases. If the failure data is 

recorded either in terms of number of failures observed per given time period or in terms of the time between failures, statistical models can be 

used to identify the trend in the recorded data, reflecting the growth in reliability. Such models are known as software reliability growth 

models (SRGMs) or growth models. They are considered for activities like prediction and estimation of software reliability. 

All the SRGMs we have discussed in this section are of the black box type since they only consider failure data, or metrics that are 

gathered if testing data are not available. Black box models do not consider the internal structure of the software in reliability estimation and 

are termed like that because they consider software as a monolithic entity, a black box. 

In the next portions of this section, five SRGMs are presented. These are namely the Jelinski-Moranda de-eutrophication model, the Goel-

Okumoto non-homogeneous Poisson pro-cess (NHPP) model, the Musa basic execution time model, the enhanced NHPP (ENHPP) model and 

the Littlewood-Verrall bayesian model. 

 

2.1 Key Terms 

 Some of the terms used in relation to SRGMs are listed below. Other terms are also used in different models and are explained as they are 

encountered. 

1. M(t)=The total number of failures experienced by time t. 

2. µ(t)=  Mean value function for an SRGM.  This represents the expectation of the number of failures expected by time t as 

estimated by the model. So we get, µ(t) = E[M(t)]. 
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3. λ(t)= Failure intensity, representing the derivative of the mean value function. There-fore λ (t) = µ '(t). 

4. Z( ∆t/ ti-1)= Hazard rate of the software, which indicates the probability density of experiencing the ith failure at ti-1 + t given that 

that (i-1)st failure occurred at ti-1. 

5. z(t)=Per-fault hazard rate, which represents the probability that a fault, that had not been activated so far, will cause a failure 

instantaneously when activated. This term is usually assumed to be a constant (ϕ) by many of the models. 

6. N=Initial number of faults present in the software prior to testing. 

 Data that are generally supplied to SRGMs are either times between failures {t1, t2, t3 …} or the times at which failure occurred {t1, t2, t 

3 …}. All the models presented here make a common assumption that the failures have no dependence on each other.   

 

2.2 The Jelinski-Moranda Model  

 This model which was developed in 1972, the Jelinski-Mornada deeutrophication model (J-M) is one of the first soft-ware reliability 

models. 

The model assumes that: 

1. N initial faults in the code prior to testing are a fixed but known value.  

2. Failures are not correlated and the times between failures are independent and  

               Exponentially distributed random variables.  

3. Fault removal on failure occurrences is instantaneous and does not inject any new faults into the software which is undergoing 

test.  

4. The hazard rate z(t) of each fault is time invariant and a constant (ϕ). Moreover, each fault is equally likely to cause a failure.  

 The assumptions lead to the hazard rate  Z( t/ ti-1) after removal of the (i – 1)st fault being proportional to the number of faults remaining in 

the software (N – M(ti-1)). Consequently  we have 

Z( t/ ti-1) = ϕ (N – M(ti-1))                                                                                                          (1) 

 The mean value function and the failure intensity functions for this model turn out to be  

 µ(t) = N (1 – e 
-ϕ t

)                                                                                                                          (2) 

                                      λ(t) = N ϕ e
-ϕ t

 = ϕ (N –µ (t))                                                                                                            (3) 

Software reliability obtained from this model can then be expressed as  

  R ( ti ) = e 
- ϕ (N – (i – 1) t

i                                                                                                                          (4) 

The model requires the elapsed time between failures or actual failure times for estimating its parameters. 

 

2.3 The Goel-Okumoto Model  

The Goel-Okumoto (G-O) non-homogeneous Poisson process (NHPP) model has slightly diff-erent assumptions from the J-M model. The 

significant difference between the two is the  

assumption that the expected number of failures observed by time t follows a Poisson distribution with a bounded and non-decreasing 

mean value function   (t). The expected value of the total number 

Of failures observed in infinite time is a finite value N. The model also makes the following assumptions : 

1. The number of software failures that occur in (t, t +∆ t] is proportional to the expected number of undetected faults, N - µ(t).  

2. The number of failures detected in the inter-failure intervals (0, t1), (t1, t2), … , (tn-1, tn) is not correlated.   

3. The per-fault hazard rate is time invariant and a constant (ϕ).  

4. The fault removal process when failures are detected is instantaneous and perfect.  

The assumptions result in the following mean-value function (and corresponding failure intensity function) to be developed for the 

expected number of failures observed by time t. 

µ(t) = N (1 – e 
-ϕ t

)                                                                                                                                       (5) 

λ(t) = N ϕ e-ϕ t = ϕ (N –µ (t))                                                                                                                        (6) 

We can observe that for a Poisson process, the failure intensity equals the hazard rate and therefore we have the failure intensity for a fault 

equals the constant per-fault hazard rate ϕ. It is clearly seen from equations (2), (3) and (5), (6) that G-O model is mathematically equivalent 

the J-M model. The basic difference lies in the assumptions and the interpretation of what N is. 

 In the J-M model, N is known and fixed, whereas in the G-O model, N itself is an expectation. 

The model requires failure counts in the testing intervals and completion time for each test period for parameter estimation. 

 

2.4 Musa’s basic execution time model : 

Musa’s basic execution time model is the first attempt at incorporating a time variant test effort 

Into reflecting software reliability growth as testing is performed. This model is also an NHPP model and assumes that the number of 

failures observed by a time is finite and follows a Poisson distribution. 

The important assumptions that this  model makes are: 

1. The execution times between failures are exponentially distributed. 

2. The per fault hazard rate is constant (ϕ)  

The model requires that actual times of the failure be recorded as these times are used in the calculation of model parameters. The failure 

intensity obtained by application of the model to the failure data is 

(t) = NBϕ e - Bϕ t                                                                                                                                              (7) 

Where N has the same interpretation as in the G-O model. B represents the fault reduction factor, which is a constant relating the rate of 

fault correction to the hazard rate. Equation (7) can also be put into the form 

(t) = ϕ (N –   (t)) = Kf (N –   (t))                                                                                                                             (8) 

Where ϕ is formulated as the product of the linear execution frequency f, and the fault exposure ratio K, which can be interpreted as the 

average number of failures occurring per fault remaining in the code during one linear execution of the program. The parameter is also 

assumed to be constant over time. Equation (8) suggests that Musa’s model is mathematically the same as the G-O and the J-M models. The 

main difference being the formulation of the per-fault hazard rate ϕ. 
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2.5 The enhanced NHPP model  

 The enhanced NHPP (ENHPP) model is a unifying framework for finite failure NHPP models i.e. other NHPP models with bounded 

mean-value functions are special cases of the ENHPP model. The model explicitly incorporates time-varying test coverage and imperfect fault 

detection in its analytical formulation. 

 Test coverage for this model is defined as the ratio of the number of potential fault sites sensitized by a test to the total number of potential 

fault sites. Potential fault regions refer to “the program entities representing either structural or functional program elements whose 

sensitization is deemed essential towards establishing the operational integrity of the software product”. 

 The model makes the following assumptions: 

1. Faults are uniformly distributed over all potential fault sites.  

2. The probability of detecting a fault when a fault site is sensitized at time t is cd(t) = K, (a constant), the fault detection coverage.  

3. Faults are fixed perfectly.  

 The mean value function for this model is developed as 

µ(t) = c(t)N                                                                                                                                                            (9) 

 Where c(t) is the time variant test coverage function and N is number of faults expected to have been exposed at full coverage. This is 

differentiated from N, which is the expected number of faults to be detected after infinite testing time, perfect test and fault detection coverage. 

The failure intensity for this model then formalizes as  

λ(t)=z(t)(N – µ ( t))                                                                                                                                             (10) 

 Where z(t) = c’(t).(1 – c(t)) – 1 is the time variant per-fault hazard rate. The model permits  the scenario of defective coverage to be 

incorporated in the reliability estimation. Various  coverage function distributions result in the variations of the NHPP models i.e. the G-O 

model, the Yamada S-shaped model, etc. Reliability as deducted from this model is expressed as 

R(t/s) = e 
– NK(c(s + t) – c(s))

                                                                                                                                              (11) 

 Where  s is the time of  last failure and t is the time measured from last failure. Grottke observed correctly, that the main advantage  of this 

model was  to serve as a unifying frame-work for NHPP models. The dependence of the per-fault hazard rate only on time-variant test 

coverage disregards other considerable factors such as the fact that full test coverage may not be successful in detecting all the faults and that 

failures may still occur without any gain in test coverage. 

 

2.6 Little wood – Verrall bayesian model: 

The models investigated in the previous sections all assume that failure data is available. They also apply classical statistical techniques 

like maximum likelihood estimation (MLE) in which model parameters are fixed but unknown and are estimated from the available data. The 

problem with such a technique is that model parameters cannot be estimated when failure data is unavailable. Even when few data are 

available, MLE techniques are not trustworthy since they can result in unstable or incorrect estimations. 

The bayesian SRGM considers reliability growth in the context of both the number of faults that have been detected and the failure-free 

operation. Further, in the absence of failure data, bayesian models consider that the model parameters have a prior distribution, which reflects 

judgement on the unknown data based on history e.g. a prior version and perhaps expert opinion about the software. 

The Littlewood – Verrall model is one example of a bayesian SRGM that assumes that times between failures are independent exponential 

random variables with a parameter ξ i, i = 1,2, …, n which itself has parameters ψ (i) and  α( representing the  programmer quality and task 

difficulty) having a prior gamma distribution. The failure intensity as obtained from the model using a linear form for the ψ  (i) function is 

λ(t)=  ( α – 1)(N
2
+2Bϕ (  α – 1 )) 

– ½
                                                                                                                  (12) 

Where B represents the fault reduction factor, as in Musa’s basic execution time model. This model requires tune between failure 

occurrences to obtain the posterior distribution from the prior distribution. 

To end  this section, almost all of the fundamental (non-bayesian) black-box models and their variations can be generalized to the model 

form of Equation (3) where failure intensity is proportional to the number of remaining faults in the software.  

 

III.WHITE BOX SOFTWARE RELIABILITY MODELS 

 White box software reliability models consider the internal structure of the software in the relia-bility estimation as opposed to black box 

models which only model the interactions of software with the system within which it operates. The contention is that black box models are 

inadequate to be applied to software systems in the context of component-based software, increasing reuse of components and complex 

interactions between these components in a large software system. Furthermore, proponents of white box models advocate that reliability 

models that consider component reliabilities, in the computation of overall software reliability, would give more realistic estimates. 

 The motivation to develop the so-called “architecture” based models includes development of techniques to analyze performability of 

software built from reused and commercial off-the shelf (COTS) components, performing sensitivity analyses i.e. studying the variation of 

application reliability with variation in component and interface reliability, and for the identification of critical components and interfaces . 

 In these white box models, components and modules are identified, with the assumption that modules are, or can be, designed, 

implemented and tested independently. The architecture of the software is then identified, not in the sense of the traditional software 

engineering architecture but rather in the sense of interactions between components. The interactions are defined as control transfers, 

essentially implying that the architecture is a control-flow graph where the nodes of the graph represent modules and its transitions represent 

transfer of control between the modules. The failure behavior for these modules (and the associated interfaces) is then specified in terms of 

failure rates or reliabilities (which are assumed to be known or are computed sepa-rately from SRGMs). The failure behavior is then combined 

with the architecture to estimate overall software reliability as a function of component reliabilities. The way in which the failure behavior is 

combined with the architecture suggests that three generic classes of white box software reliability models exist: path based models, state 

based models and additive models. 

 

3.1 Krishnamurthy and Mathur’s path based model : 

The primary assumption in this model is that component reliabilities are known. The model averages path reliability estimates over all the 

test cases run on particular software to estimate software reliability. Path reliability is computed from the sequence of components across a 

path that is followed when a particular test from the set of test cases is executed. The “architecture” of the software is essentially the sequence 

of components along different paths obtained from exe-cution traces collected from testing or simulation of the software. 
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If each component has reliability Ri then assuming that each component fails independently, the path reliability Rp of a trace M(P, t) for a 

program P containing a sequence of components m executed against a test case t belonging to a test suite T is 

Rp =  ∏ Ri                                                                                                                                                                  (13) 

                 m∈M ( P,t ) 

The overall system reliability Rsys is the average of all path reliabilities over the test suite T is 

Rsys = ∑Rp                                                                                                                                                             (14) 

                    | T | 

Intra-component dependencies and the effect of a large number of loops introduce the possibility that multiple occurrences of a component 

along a trace path are not independent. This is modeled by considering that multiple occurrences of a component along the same path is 

equivalent to having k > 0 occurrences where k represents the degree of independence. The larger the value of k the lower is the estimate of 

path and consequently system reliability. 

Other path based models follow similar approaches and system reliability is computed in general by considering possible execution paths 

of a program either by testing, experimentally or algorithmically. 

  

3.2 Gokhale’s state based model : 

The particular characteristic of this model is that it either assumes that component reliabilities are available or it determines component 

reliabilities using the ENHPP SRGM. Incidentally, the developers of this model and the ENHPP model are the same. Another assumption is 

that the application for which reliability is to be predicted is a terminating application. Gokhale et al. observe that if the control transfers 

between modules are assumed to be a markov process then the control-flow graph, describing the architecture, of the software can be directly 

mapped into a discrete-time or continuous-time markov chain, with a one-one correspondence between the architecture and the markov chain. 

The transitions of the markov chain represent the transition probabilities between modules (pij) and the expected time spent in a module i 

per visit ti is computed as a product of the expected execution time of each block and the number of blocks in the module. 

Component reliabilities are computed from the ENHPP model as 

    

 
     

Where Vi is the expected number of visits to module I and  i(t) is the time dependent failure intensity and ViTi is the total expected time 

spent in a module. The reliability of the overall system is then computed as 

                                                                                   

n                                                                                                                                                     (16) 

                  Rsys = ∏ Ri 

                                        i 

Another category of white box models includes models known as additive models. These models concentrate on computing overall system 

reliability using component failure data and do not try  to develop an architecture for the system. The overall system failure intensity is 

calculated as the sum of component failure intensities while assuming that component reliability can be estimated using the NHPP class of 

software reliability growth models. 

 

IV. CONCLUSION  

 As stated by experts, “There is no universally acceptable model that can be trusted to give accurate results in all circumstances; users 

should not trust claims to the contrary. Worse, we cannot identify a priori for a particular data source the model of models, if any, that will give 

accurate results; we simply do not under-stand which factors influence model accuracy”. Often its observed  that a group of growth models 

having same  assumptions  in their predictions disagree for the same set of failure data and it is also the case that all the models make the same 

wrong prediction. In such a scenario, the predictions from the models are inconclusive and might only be best used for current reliability 

estimation but they cannot be applied for prediction. 

With regard to white box models, most models make the assumption that component reliabilities are available and ignore the issue of how 

they can be determined. This is still an open research issue. With scarcity of failure data in components, it is not always possible to employ 

SRGMs to estimate component reliabilities such as in Gokhale’s state based model. Moreover, the assumption of independence between 

failures in components can be violated du-ring unit testing, which implies that a reliability growth model can no longer be used to determine 

component reliabilities. Inter-component dependence is assumed to be nonexistent in architecture based models, which does not seem to be a 

very realistic assumption. The problem arises when an interface causes error propagation between two components and causes failures in both 

components. This invalidates the assumption of independence in component and interface failures and the models are no longer applicable. 

The main strength of architecture based models, especially of state based models, is that the supporting framework for reliability prediction 

can also be used for performance analysis, also for analysis of sensitivity of the software modules and in the identification of critical 

components. 

Most models depend on the existence of failure data, the only exception being that of bayesian growth models that assume a prior 

distribution for the SRGM parameters. However, these models inherit the drawback from their inapplicability when software reliability is 

considered to be a function of the reliabilities of its components and interfaces. This appears to be the case with the increasing use of COTS in 

building software. Prediction of reliability at the testing stage disallows major feedback to the design process due to reason that testing is too 

far down the software engineering cycle in a conventional software development model. 

We have a opinion that  a combined  framework that utilizes software metrics early during the software engineering cycle, like failure data, 

when available, process metrics and process history to repeatedly  estimate or predict reliability would be of great value in the view  of early 

validation of reliability requirements, for making software design tradeoffs and for evaluating software architectures. We have observed , no 

framework exists till date  that produces a justifiable  prediction of software reliability when data is less and refines the prediction when data 

does become considerably available. These are areas which can be further researched by practioners. 
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