Interaction of Methyl Orange with TBC.

Anil Kumar Pandey

Department of Chemistry, J.N College, Dhurwa Ranchi, Jharkhand

Abstract:

Methyl Orange is a Nitrogen containing Organic acid. It was treated with TBC and complexation was observed interesting results were obtained. The solid products were analysed in different physical parameters.

(Key Words: Methyl Orange, Oxidation, Complexation.)

Introduction:

TBC (Tertbutyl chromate) is oxidizing agent for oxidation of Organic substrates. In this work Methyl Orange is oxidized by TBC in different molar ratios. Four different products were prepared with product code MTR 1,MTR 2, MTR 3 and MTR 4, in the ratio of 1:0.5, 1:1, 1:1.5 and 1:2 respectively. All products were characterized on the basis of elemental analysis, I.R.Spectral studies and thermal analysis.

Chemicals Used:

Methyl Orange, Chromium Trioxide, Tertiary Butyl Alcohol, Acetone, etc. (The chemicals used were of

A.R.grade)

Experimental procedure :

Oxidation of methyl orange with TBC was carried out in substrate : oxidant 1:0.5, 1:1, 1:1.5 and 1:2 molar ratios.

The desired strength of the oxidant was achieved by taking 0.01 mole of the substrate and 0.5g, 1g, 1.5gand 2g of CrO₃ in TBA (Tert butyl alcohol) respectively.

The substrate was mixed with minimum volume of distilled water (E-Merk). Solid CrO_3 was added with constant and vigorous stirring. Precaution was taken to avoid reaction being violent at the time of mixing the reagent. The solution of the substrate and the oxidant where mixed with constant and vigorous stirringfor about 1.5 hour at 75°C (No reaction was initiated at room temperature). The mixture wat left overnightfor complete reaction. The product where collected as sample MTR1, MTR2, MTR3 and MTR4.

(in substrate : oxidant 1:0.5, 1:1, 1:1.5 and 1:2 molar ratio respectively.)

The solid obtained was then powdered in mortar and pestle. Successive washings with distilled water. Ethanol, dioxin and finally with acetone removed soluble impurities. The light brown complex obtained was insoluble in water and acetone. The product was dried and collected in an air tight bottle.

FTIR Analysis of Products :

The FTIR curves of MTR1, MTR2, MTR3 and MTR4 contain almost all the peak which are expected for their formulation. The FTIR band assigned for various groups are listed below.

MTR1	MTR2	MTR3	MTR4	Band Assignment	References
1033.85	1033.85	1033.85	1033.85	$V_{a}(S = 0)$	5a
1600.92	1602.85	1593.20	1595.13	-N = N-	5b
1384.89	1390.68	1384.89	1384.89	C – N	5c
1193.94	1193.94	1186.22	1186.22	N-CH₃ (Symmetric)	5d
1120.64	1120.64	1120.64	1186.22	N-CH₃ (Bending)	5e
3294.42	32803.92	3329.14	3332.99	Co-ordinated H ₂ O	5f
570.93	572.86	563.21	565.14	V (Cr-N)	5g
433.98	507.28	532.35	430.13	V(Cr-O)	5h

Thermal Analysis of MTR1 :

The complex having empirical formula $Cr_5C_{15}H_{38}N_3SO_{45}$ (MTR1) shows endothermic loss up to temperature 113.36°C. This loss is anticipated due to loss of hydrated water (H₂O) molecule with mass loss 89.071 (theoretical loss 90.075). In the temperature range 113.36°C – 239.43°C. There is expected loss of 3CO₂ with mass loss 133.607 (theoretical 132.027).

Temperature(⁰ C)								
						aCumulative %Los		oss
	experiment	Experimental	Predicted	N N	vt. Experimenta	al <mark>in Formula wt</mark> .	(Theoretical)	
		(Theoretical)		(Theoretical)	Experimental		
						(Theoretical)		
R.T.			Cr ₅ C ₁₅ H ₃₈ N ₃ SO ₄	15				
Unto 113 36 ⁰ C								
opto 115.50 C			Cr-C-HaoNaSO					
	0.2	1102 276	C15C151128103502		0.071	70/		
							5 H2U	
		(1182.372)		(90.075)	(7.079%)		
Upto 239.43°C								
			$Cr_5C_{12}H_{28}N_3SO_3$					
				1	L33.607	17.5%	3CO2	
		(1051.349)		(132.027)	(17.376%)		
	R.T. Upto 113.36ºC Upto 239.43ºC	R.T. Upto 113.36 ^o C 93 Upto 239.43 ^o C 82.5	(Theoretical) R.T. Upto 113.36°C 93 1183.376 (1182.372) Upto 239.43°C	R.T. (Theoretical) Upto 113.36°C 93 93 1183.376 (1182.372) Cr ₅ C ₁₂ H ₂₈ N ₃ SO ₂ 82.5 1149.769	R.T. Cr ₅ C ₁₅ H ₃₈ N ₃ SO ₄₅ Upto 113.36°C 93 93 1183.376 (1182.372) Cr ₅ C ₁₂ H ₂₈ N ₃ SO ₄₂ 82.5 1149.769	Image: Construction (Theoretical) (Theoretical) R.T. CrsC15H38N3SO45 (Theoretical) Upto 113.36°C 93 1183.376 CrsC15H28N3SO42 93 1183.376 89.071 (1182.372) CrsC12H28N3SO34 89.071 Upto 239.43°C 82.5 1149.769 133.607	Image: Constraint of the constraint	Image: Construction (Theoretical) (Theoretical) Experimental (Theoretical) R.T. Vpto 113.36°C 93 1183.376 (1182.372) Cr ₅ C ₁₅ H ₂₈ N ₃ SO ₄₂ 89.071 (90.075) 7% (7.079%) 5 H ₂ O Upto 239.43°C 82.5 1149.769 Cr ₅ C ₁₂ H ₂₈ N ₃ SO ₃₄ 133.607 17.5% 3CO ₂

Table : Thermal Analysis of MTR1

Proposed Empirical formulation of MTR1 is Cr₅C₁₅H₃₈N₃SO₄₅ and the sequence of thermal degradation may be interpreted as follows

Cr₅C₁₂H₂₈N₃SO₃₄

 $Cr_5C_{15}H_{38}N_3SO_{45}$

- $Cr_5C_{15}H_{28}N_3SO_{42}$
- JETIR1701883 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 290

Thermal Analysis of MTR2 :

The complex having empirical formula $Cr_5C_{15}H_{41}N_3SO_{44}$ (MTR2) shows endothermic loss up to temperature 120.96^oC. This loss is anticipated due to loss of hydrated water (H₂O) molecule with mass loss 144.839 (theoretical loss 144.120). In the temperature range 120.96^oC – 223.35^oC. There is expected loss of 2 CO₂, with mass loss 88.163 (theoretical 88.018).

Code	Temperature	% mass leftin	Weight left	Formula Predicted	Loss in Formula	Cumulative	Group loss
	(⁰ C)	experiment	Experimental		wt.	% Loss in	(Theoretical)
			(Theoretical)		Experimental	Formula wt.	
					(Theoretical)	Experimental	
						(Theoretical)	
MTR2	R.T.						
				$Cr_5C_{15}H_{41}N_3SO_{44}$			
	Upto 120.96 ⁰ C						
		88.5	1114.630	$Cr_5C_{15}H_{25}N_3SO_{36}$	144.839	11.5%	8H2O
			(1115.349)		(144.120)	(11.443%)	
	Upto 233.35 ^o C	-					
		81.5	1026.467	$Cr_5C_{13}H_{25}N_3SO_{32}$	88.163	18.5%	2 CO2
			(1026.349)		(88.081)	(18.489%)	
			Let				

Table : Thermal Analysis of MTR2

Proposed Empirical formulation of MCR2 is $Cr_5C_{15}H_{41}N_3SO_{44}$ and the sequence of thermaldegradation may be interpreted as follows

$Cr_5C_{15}H_{41}N_3SO_{44}$ —	 Cr ₅ C ₁₅ H ₂₅ N ₃ SO ₃₆	-	Cr5C13H25N3SO32

Thermal Analysis of MTR3 :

The complex having empirical formula $Cr_4C_{13}H_{37}N_3SO_{39}$ (MTR3) shows endothermic loss up to temperature 117.54^oC. This loss is anticipated due to loss of hydrated water (H₂O) molecule with mass loss 109.043 (theoretical loss 104.090). In the temperature range 117.54^oC – 232.28^oC. There is expected loss of CO₂ with mass loss 87.954 (theoretical 88.018).

Further in the temperature range $232.28^{\circ}C - 755.37^{\circ}C$ there is expected loss of SO₂ and N₂ withmass loss of 288.851 (theoretical 286.229).

© 2	2015 JETIR Feb	ruary 2015, Volι	ıme 2, Issue 2		www.	jetir.org (ISSN-2	2349-5162)
Code	Temperature (ºC)	% mass left ir experiment	Weight lef Experimental (Theoretical)	tEmpirical Formula Predicted	Loss in Formula wt. Experimental (Theoretical)		Group loss h(Theoretical)
MTR3	R.T.			Cr4C13H37N3SO39			
	Upto						
	117.54ºC	90	989.485 (991.338)	$Cr_4C_{13}H_{25}N_3SO_{33}$	109.943 (108.090)	10% (9.831%)	6H₂O
	Upto 232.28ºC	82	901.531 (901.467)	$Cr_4C_{11}H_{25}N_3SO_{29}$	87.954 (88.018)	18% (18.006%)	CO ₂
	Upto 755.37ºC	56	615.680 (615.302)	Cr4C11H5O17	285.851 (286.229)	44% (44.304%)	SO2,N2 , ½ N2,10H2O

Table : Thermal Analysis of MTR3

Proposed Empirical formulation of MTR3 is $Cr_4C_{13}H_{37}N_3SO_{39}$ and the sequence of thermaldegradation may be interpreted as follows

$Cr_4C_{13}H_{37}N_3SO_{39}$	>	$Cr_4C_{13}H_{25}N_3SO_{33}$	$Cr_4C_{11}H_{25}N_3SO_{29}$	$Cr_4C_{11}H_5O_{17}$

© 2015 JETIR February 2015, Volume 2, Issue 2

Thermal Analysis of MTR4 :

The complex having empirical formula $Cr_4C_{14}H_{44}N_3SO_{45}$ (MTR4) shows endothermic loss up to temperature 116.34^oC. This loss is anticipated due to loss of hydrated water (H₂O) molecule with mass loss 133.593 (theoretical loss 135.113). In the temperature range 116. $34^{\circ}C - 233.44^{\circ}C$. There is expected loss of CO₂ with mass loss 88.050 (theoretical 88.018).

Further in the temperature range $233.44^{\circ}C - 765.48^{\circ}C$ there is expected loss of SO₂ and N₂ 13.5H₂O with mass loss of 349.164 (theoretical 349.282).

Code	Temperature				Loss in Formula		Group los
	(⁰ C)		•		wt.	Loss in Formula	(Theoretic
		ent	(Theoretical)		Experimental	wt.	al)
					(Theoretical)	Experimental	
				<u> </u>		(Theoretical)	
MTR 4	R.T.						
				Cr4C14H44N3SO45			
	Upto				\mathbf{D}		
	116.34ºC	89	1080.889		133.593	11% (11.125%)	7.5H₂O
			(1079.369)	Cr₄C ₁₄ H ₂₉ N₃SO₃7.5 ↓	(135.113)		
						18.25%	
	Upto		992.839 (992.871)		88.050 (88.018)	(18.247)	2CO ₂
	233.44 ⁰ C		(332.871)	↓ ↓	(88.018)		
	Upto	53	643.675			47%	
			(643.557)		349.164	(47.010)	SO ₂ , N ₂
	765.48ºC			Cr4 <mark>C12H</mark> 2O20	(349.282)		1/2 N ₂
							13.5H₂O

Table : Thermal Analysis of MTR4

Proposed Empirical formulation of MCR4 is $Cr_4C_{14}H_{44}N_3SO_{45}$ and the sequence of thermaldegradation may be interpreted as follows.

 $Cr_4C_{14}H_{44}N_3SO_{45}$

 $Cr_4C_{14}H_{29}N_3SO_{37.5}$

 $Cr_4C_{12}H_{29}N_3S\Theta_{33.5}$

 $Cr_4C_{12}H_2O_{20}$

REFRENCES

1. C.B Powar, G.R Chatwal, Himalaya Publishing House, 5th Ed., 171(2006).

2. A.K.Laha, A.B . Kulkarni, J.Sc. ind. Res, 34,605(1985).

3. Robert M.Silverstein, Francis X. Webster, Spectrometry Identification Of Organic Compounds, WillyIndia 6th Ed, a.18,b.165,c.183, d.185, e.217 (2007).

4. Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordinated Compounds, Part B, John Wiley, New York, Ed.5, a.1, b.4, c.54, d.60, e.65, f.75, g.87, h.88, I.90 (1997).

5. Gamo I., Bull. Chem. Soc. Japan, 34, 760, 765, 1430, 1433(1961).

6. Fujita . Nakamoto K., and Kobyashi, J.M.Chem.Soc.78, 3963(1956).

7.Dyer J.R. Applications of Absorption Spectroscopy of Organic Compounds, Prentice Hall of India 18thprint, a.34, b.37, (1991).

