Study and some Result on Non expansive Mapping in linear 2 normed spaces.

Dr. Hans Kumar Singh
Department of Physics,
Baboo Bhuneshwar Prasad Degree College, Jai Prakash University, Chapra.

INTRODUCTION — The notion of linear 2- normed spaces was introduced by S. Gahler. He further studies the topological studies of 2-normed spaces. Iseki introduced the notion of non-expansive mapping in 2- normed spaces. Then mathematician like Diminni and white further studied non-expansive mapping in linear 2- normed spaces and obtained the results of Iseki as their corollaries and they contributed a lot for the extension of this branch of mathematics, physics and other Science.

KEYWORD — 2- normed spaces, non-expensive mapping, convex subset

1. Let X be a linear space of dimension greater than 1 and let $\|:\|$ be a real valued function defined on $X \times X$ such that :
 1. $\| a, b \| = 0$ if any only if and b are linearly dependent,
 2. $\| a, b \| = \| b, a \|,$
 3. $\| a, \alpha b \| = |\alpha| \| a, b \|,$ were α is real,
 4. $\| a + b, c \| \leq \| a, b \| + \| a, c \|.$

 $\|:\|$ is called a 2-norm on X and $(X, \|:\|)$ is a linear 2-normed space. By condition 2 and 4, a 2-norm is non-negative.

Definition : If K is a convex subset of X, a mappings $T : K \rightarrow X$ is said to be non-expansive if for every $x, y \in K$ and $z \in X$,

1. $\| T(x) - T(y), z \| \leq \| x - y, z \|.$

In the following, the real number system will be denoted by R. Also, a subset of L of x of the form $\{x_1 + ax_2 : a \in R\}$, where x_2 is non-zero, will be called a line. $\alpha \in R$

Theorem : Let K be a convex set which contains a least 2 elements and is none a subset of line. Then, T is non-expansive if and only if there is a $c \in R$ and there is a point $z_0 \in X$ such that $|c| < 1$ and $T(x) = cx + z_0$, for every $x \in K$.

Proof— Since all functions of the above type are non-expansive, we need show only that all non-expansive maps are of this type.

1. Assume first the $0 \in K$ and $T(0) = 0$. Then, for every $x \in X$,
2. $\| T(x), z \| \leq \| X, Z \|.$

Therefore, for each $x \in K$, there is a real number $g(x)$ such that $T(x) = g(x)x.$
If \(x \) and \(y \) are independent elements of \(K \), then \(\frac{1}{2} (x + y) \in K \) also, and by (1),
\[
\left(T \frac{x + y}{2} \right) - T(x), x - y \| \leq \| \frac{x + y}{2} x - y \| = 0.
\]
Therefore, there is a \(k \in R \) such that
\[
\left(T \frac{x + y}{2} \right) - T(x) = k(x - y)
\]
\[
g \left(\frac{x + y}{2} \right)\left(\frac{x + y}{2} \right) - g(x) x = k(x - y)
\]
Then,
\[
\left[\frac{1}{2} g \left(\frac{x + y}{2} \right) - g(x) - k \right] x = \left[k + \frac{1}{2} g \left(\frac{x + y}{2} \right) \right] y
\]
which implies that \(g(x) = g \left(\frac{x + y}{2} \right) \) by the independence of \(x \) and \(y \). Since a similar argument shows that \(g(y) = g \left(\frac{x + y}{2} \right) \), it follows \(g(x) = g(y) \) whenever \(x \) and \(y \) are independent.

If \(x \) and \(y \) are non-zero, independent elements of \(K \), then since \(K \) is not a subset of a line, there is a \(z \in K \) such that \(z \) and \(x \) and \(z \) and \(y \) are independent. By the arguments used above, \(g(x) = g(z) = g(y) \).

Therefore, \(g(x) = g(y) \) for all non-zero \(x, y \in K \). Since \(T(0) = 0 \), there is a real number \(c \) such that \(T(x) = cx \) for every \(x \in K \). Finally, (2) implies that \(|c| < 1 \).

2. For arbitrary \(T \) and \(K \) which satisfy the hypotheses, choose and \(x \in K' = \{ x - x_0 : x \in K \} \).

Then \(K' \) is not contained in a since \(K \) is not a subset of a line, and \(x \in K' \). Define \(S : K' \to x \) by
\[
\| S(x - x_0) - S(y - x_0), z \| = \| T(x) - T(y), z \|< \|x - y, z\|
\]
\[
= \|(x - x_0) - (y - x_0), z\|.
\]
Hence, \(S \) is non-expansive on \(K' \) and
\[
S(0) = S(x - x_0) = T(x_0) - T(x_0) = 0
\]
By part 1, there is a \(c \in R \) such that \(|C| < 1 \) and for every \(x \in K \),
\[
S(x - x_0) = c (x - x_0).
\]
Therefore, for every \(x \in K \),
\[
T(x) = cx + T(x_0) - x_0.
\]
The following example shows that the characterization fails if \(K \) is contained in a line.

Example: Suppose \(K \) is subset of the line \(L = T(x) = cx + T(x_0) - x_0 \).

Define \(T : K \to X \) by \(T(x_1 + \alpha x_2) = (\sin \alpha) x_2 \).
Then, if \(x_1 + \alpha x_2 \) and \(x_1 + \gamma x_2 \) are in \(K \) and \(z \in X \),
\[
\| T(x_1 + \alpha x_2) - T(x + \gamma x_2), z \| = \| \sin \alpha - \sin \gamma \| ||x_2, z|| < \alpha - \gamma \| ||x_2, z||
\]

Hence, \(T \) is a non-expansive mapping which does not satisfy Theorem 1.

For convex sets which are subsets of lines, we have the following characterization of non-expansive mappings.

Theorem: Suppose \(K \) is a convex subset of line \(L = \{ x_1 + \alpha x_2 : \alpha \in R \} \), where \(x_1 \in K \), and let \(\{ \alpha : x_1 + \alpha x_2 \in R \} \). Then, \(T : K \rightarrow X \) is non-expansive if and only if there is a function \(g : A \) \(g(0) = 0 \) and \(T(x_1 + \alpha x_2) = g(\alpha) x_2 + T(x_1) \).

Proof: Again, since the sufficiency of the above conditions is clear, we need only to prove the necessity.

1. Assume \(x_1 = 0 \) and \(T(0) = 0 \). Then, for every \(\alpha \in A \) and \(z \in X \), (3) \(||T(x_2), z|| < ||\alpha x_2, z|| \).

 Therefore, for every non-zero \(\alpha \in A \), there is a real number \(g(\alpha) \) such that \(|g(\alpha) - g(\gamma)| < \alpha - \gamma| \) for every \(\alpha, \gamma \in A \).

2. If \(x_1 = 0 \) or \(T(x_1) = 0 \) let \(K' = \{ \alpha x_2 : \alpha \in A \} \). Then, \(K' \) is convex, \(0 \in K' \), and \(K' = \{ \alpha x_2 : \alpha \in R \} \). Define \(S : K' \rightarrow X \) by
 \[
 S(\alpha x_2) = T(x_1 + \alpha x_1) - T(x_1)
 \]
 for every \(\alpha \in A \). Note that \(S(0) = 0 \) and for \(\alpha, \gamma \in A \) and \(z \in X \),
 \[
 ||S(\alpha x_2) - S(\gamma x_2), z|| = ||T(x_1 + \alpha x_2) - T(x_1 + \gamma x_2), z|| < ||\alpha x_2 - \gamma x_2, x||.
 \]

 Therefore, since \(S \) and \(K' \) satisfy the assumptions made in part 1, it follows that there is a function \(g : A \rightarrow R \) such \(S(\alpha x_2) = g(\alpha) x_2 \). Hence, for every \(\alpha \in A \), \(T(x_1 + \alpha x_2) = g(\alpha) x_2 + T(x_1) \).

 It is known that in a strictly convex 2-normed space, the set \(F(T) \) of fixed points of a non-expansive \(T \) is always a convex set. This result can now be proven for any 2-normed space.

REFERENCES

7. C. Diminnie and A. White Non-expansive Mappings in Linear 2-normed Spaces, Math, Sem. Kobe University, (1976), 4

11. Das E Sarasa, on statically Pre cauchey sequence Taiwanese J. Math (2014),18,1

12. H Lahlic, S. Ersan, Strongly lagunary ward continuity in 2 normed spaces, sci world J. (2014), 479679

