A LITERATURE REVIEW ON EFFICIENT ITERATIVE OFDM CHANNEL ESTIMATION

SHAILENDRA SINGH RAJPUT\(^1\), AGRANSHU DWIVEDI\(^2\), PUSHPENDRA AHIRWAR\(^3\)
\(^1\)ME student; \(^2\)Asst. Prof.
Dept of ECE, G.N.C.S.G.I., JABALPUR, M.P., INDIA,

ABSTRACT: In this paper, we introduce a new iterative channel estimation technique with OFDM systems. The proposed channel estimator uses soft symbol decisions obtained by iterative detection and decoding (IDD) scheme to enhance the quality of channel estimate. The demands for high bandwidth & high speed application are growing at a faster rate and with the minimum tolerance of error. To enhance available bandwidth and improve the quality of transmission convolution codes are used on the OFDM (Orthogonal frequency division multiplexing) communication system over AWGN channel. In OFDM systems with channel estimation play a key role in overcoming distortions caused by phenomena like fading, delay spread and multipath effects. A series of review papers were already available to provide a history of the development of the field until the end of the last decade. During survey of work we have found that different authors have developed different methods to solve the purpose. So from the study of various papers we can easily conclude that there is not any unique method. Hence in this work we come across to develop a new iterative channel estimation OFDM algorithm.

INDEX TERMS: OFDM, IDD, Convolution coding, AWGN channel, channel estimation, modulation scheme.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is an efficient multicarrier modulation scheme which is resilient to the effect of multipath fading channels. Although all the OFDM subcarriers are modulated by waveforms that are limited in the time-domain, in practice, there is unavoidable power leakage in the frequency-domain and because of this; the guard band has to be placed so as to minimize adjacent channel interference to other coexisting wireless systems [1].

Single carrier frequency domain equalization (SC-FDE) has been widely considered as an attractive technology for uplink broadband wireless transmissions mainly due to its advantage of lower peak-to-average transmit power ratio when compared with orthogonal frequency division multiplexing (OFDM). In the previous studies of FDE, a frequency domain equalizer with time domain decision feedback processing (FD-DFE) was proposed algorithm to enhance the frequency domain linear equalization (FD-LE) scheme [2].

These days communication requires a very high rate with high reliability. Two major difficulties that hinder reliable communication via high rate wireless communication systems are bandwidth limitation of communication channels and multipath fading [3].

Orthogonal Frequency Division Multiplexing (OFDM) based communication a system has been identified as one of key transmission techniques for next generation wireless communication systems. The main attractions of OFDM are handling the multi-path interference, and mitigate inter-symbol interference (ISI) causing bit error rates in frequency selective fading environments. Wireless mobile communication systems of the 21st century have to confirm a wide range of multimedia services such as speech, image, and data transmission with different and variable bit rates up to 2mbps. It is all recognized that there is a great impact of channel coding on the performances of OFDM based wireless communication system to provide high data rates over severe multipath channels [4].

We focus on Channel Estimation (CE) and Channel Length Estimation (CLE) for OFDM systems. CE plays a fundamental role in modern communication systems, especially for wireless devices. For a coherent communication, the channel must be estimated at the transmitter and/or receiver side. Knowledge of the Channel State Information (CSI) at the transmitter side is usually the most favorable condition, since the transmitter can apply smart techniques in advance, to adapt the communication to the environment conditions [5].

In recent years, OFDM has emerged as the standard of choice in a number of important high-data-rate applications. In OFDM, instead of using a single wide-band carrier to transmit information, a large number of parallel narrow-band sub-carriers are used. In OFDM serial-to-parallel transmitter converts the incoming high-rate data stream into low-rate streams, and then transmits each low-rate data stream over a unique orthogonal carrier. The data rate of each transmitted stream is effectively reduced by a factor of N from the original data rate. Utilizing this strategy, OFDM drastically reduces inter symbol interference (ISI) by avoiding multipath in frequency-selective channels [6].

II. LITERATURE REVIEW

SU HU et.al: This paper is focused on training sequence design for efficient channel estimation in multiple input multiple-output filterbank multicarrier (MIMO-FBMC) communications using offset quadrature amplitude modulation (OQAM). MIMO-FBMC is a promising technique to achieve high spectrum efficiency as well as strong robustness against dispersive channels due to its feature of time-frequency localization. In this paper, authors proposes a new class of training sequences, which are formed by concatenation of two identical zero-correlation zone sequences whose auto-correlation and cross correlation are zero within a time-shift window around the in-phase position [1].

Yu Zhu et.al: In this paper, author considers a robust SC-FDE design with imperfect channel knowledge at a receiver due to the channel estimation error. Based on a statistical model for channel estimation, the optimal equalization coefficients are derived under the criterion of minimizing the mean square error conditioned on a given channel estimate. The bit error rate is further analyzed and a tight performance approximation is proposed. Two robust FDE schemes in coded systems were also proposed, where feedback from the channel decoder is utilized to improve the equalization and/or channel estimation performance [2].
Charles U. Ndjuiba et.al: Authors proposed a Joint estimation of the channel length and of the impulse response for OFDM systems, exploiting information criteria to find the best trade-off, in terms of Kullback-Leibler divergence, between noise rejection and channel description accuracy. So far, information criteria have not been used for practical channel length estimation methods, due to their prohibitive complexity. Authors show how to make them affordable, performing channel estimation in a recursive way that allows establishing the optimal channel length with a moderate incremental cost & achieved performance and robustness are very good [3].

Alessandro Tomasoni et.al: In this paper transmission scheme for OFDM have been investigated. The advantage of employing adaptive transmission scheme is described by comparing their performance with fixed transmission system. A better adaptation algorithm is used to improve the throughput performance. This algorithm utilizes the average value of the instantaneous SNR of the subcarriers in the switching parameter. The results show an improved throughput performance with considerable BER performance [5].

Hardeep Kaur et.al: Authors proposed a COFDM based WiMax here, which promises to cater these high speed and high quality applications. Worldwide Interoperability for Microwave Access (WiMax) is an IEEE 802.16 standard-based broadband wireless access (BWA) technology which employs Coded orthogonal frequency division multiplexing access (COFDM). This paper analyses Bit Error Rate for WiMax based COFDM system with QPSK modulation scheme under various channel conditions like AWGN, Rayleigh, Rician and Nakagami-m. It has been observed that performance of Nakagami fading channel is better than other fading channels [6].

Sanjana T et.al: In this paper channel estimation and equalization techniques are analyzed to improve the performance of OFDM system. The channel estimation techniques considered here are estimation using wiener filter and frequency domain approach. Prior Channel estimation leads to simple equalization. The channel equalization techniques employed here are based on LMS algorithm and one tap frequency domain equalization, under different channels; AWGN, Rayleigh and Rician channels. Eye patterns for different channels are compared in simulation. It is observed from simulation that wiener filter provides better estimation and OFDM performance is better under AWGN channel than fading channels. SER curves shows 6dB improvement in AWGN performance than fading channels to achieve 0.1 SER. In addition, MSE performance shows fast convergence for AWGN channel [7].

Sunho Park et.al: Authors proposed a new decision-directed channel estimation technique with pilot shortage in the MIMO-OFDM systems. The proposed channel estimator uses soft symbol decisions obtained by iterative detection and decoding (IDD) scheme to enhance the quality of channel estimate. Using the soft information from the decoders, the proposed channel estimator selects reliable data tones, subtracts interferences, and performs re-estimation of the channels. Authors analyze the optimal data tone selection criterion, which accounts for the reliability of symbol decisions and correlation of channels between the data tones and pilot tones. From numerical simulations, we show that the proposed channel estimator achieves considerable improvement in system performance over the conventional channel estimators in realistic MIMO-OFDM scenarios [8].

Petros S. Bithas et.al: Authors proposed a new threshold-based channel selection strategy, which decreases the system complexity, without considerably affecting the system performance. Assuming independent but nonidentically distributed channel conditions, a generic analytical formulation is first presented, based on the Markov chain theory. Then, the proposed selection scheme is applied to three specific communication scenarios, namely multichannel reception; transmit antenna selection with diversity reception, and cooperative relay selection. In all three cases, closed-form results are obtained and used to analyze the performance of the systems under consideration. It is shown that based on the proposed scheme, computational complexity is reduced and thus important energy savings can be achieved, without a significant loss in performance [9].

Dimitrios Katselis et.al: Authors proposed preamble-based least squares (LS) channel estimation in OFDM systems of the QAM and offset QAM (OQAM) types is considered. The construction of optimal (in the mean squared error (MSE) sense) preambles is investigated, for sparse (a subset of pilot tones, surrounded by nulls) preambles. The two OFDM systems are compared for the same transmit power, which, for cyclic prefix (CP) based OFDM/QAM, also includes the power spent for CP transmission. OFDM/OQAM, with a sparse preamble consisting of equipped and equipped pilots embedded in zeros, turns out to perform at least as well as CP-OFDM. Simulations results are presented that verify the analysis [10].

Yuan Ouyang et.al: Author presents the performance analysis of the multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wideband (UWB) systems for multipath fading and multiuser interference channels. A closed form approximation of the BER performance of the MB-OFDM UWB system with multiple interferences is proposed. Based on the derived approximation, the effects on the BER performance for the choice of the codeword constraint lengths of the convolutional encoder, the length of the cyclic prefix, and the multiuser environments of two or more interferers are thoroughly discussed. The simulated results provide us with useful information to appropriately choose the parameters of the MB-OFDM UWB system for the sake of achieving the BER performance that conforms to requirement of the FCC standards [11].

B. Siva Kumar Reddy et.al: Author presents The mobile-WiMAX offers a special feature that has adopted an adaptive modulation and coding (AMC) in OFDM to provide higher data rates and error free transmission. AMC technique employs the channel state information (CSI) to efficiently utilize the channel and maximize the throughput with better spectral efficiency. In this paper, LSE, MMSE, LMMSE, Low rank (LR)-LMMSE channel estimators are integrated with the physical layer. The performance of estimation algorithms is analyzed in terms of BER, SNR, MSE and throughput. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value [12].

Han Wang et.al: An Adaptive Regularized Compressive Sampling Matching Pursuit (ARCoSaMP) algorithm is proposed here. Unlike anterior greedy algorithms, the new algorithm can achieve the accuracy of reconstruction by choosing the support set adaptively, and exploiting the regularization process, which realizes the second selecting of atoms in the support set although the sparsity of the channel is unknown. Simulation result shows that CS-based methods obtain significant channel estimation performance improvement compared to that of conventional preamble-based methods. The proposed ARCoSaMP algorithm outperforms the conventional sparse adaptive matching pursuit (SAMP) algorithm. ARCoSaMP provides even more interesting results than the most advanced greedy compressive sampling matching pursuit (CoSaMP) algorithm without a prior sparse knowledge of the channel [13].

Shilpi Gupta et.al: This paper investigates a new ICI self-cancellation technique to mitigate the effect of ICI in FFT-OFDM and compares it to DCT based OFDM system in terms of bit error rate (BER) and carrier to interference ratio (CIR). The proposed method for group
size three results in a significant 20 dB improved CIR in FFT-OFDM. In terms of BER, proposed ICI self-cancellation technique outperforms the other self-cancellation techniques in FFT-OFDM. Also, this paper investigates outperforming BER and CIR improvement by using DCT-OFDM without applying self-cancellation techniques, due to its energy compaction property [14].

Archana Jatav et al.: Author purposes the adaptive equalizer is to operate on the channel output such that the cascade connection of the channel & the equalizer provides an appropriate to an ideal transmission medium. This paper presents the performance of channel equalization based RLS & LMS Adaptive equalizer. Author compares the proposed algorithm with other algorithm. Finally concludes that RLS-LMS equalizer with QAM modulator gives better bit error rate than RLS & LMS equalize [15].

Guan Gui et al.: Author proposes two stable sparse variable step-size NLMS (VSSNLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics [16].

Thamer M. Jamel et al.: “Author’s proposes new two smart antennas algorithms based on a combined method for performance enhancement of mobile communications systems. The first proposal combination method includes merging pure Conjugate Gradient Method (CGM) with pure Normalized Least Mean Square (NLMS) algorithms, so that the new algorithm is called as CGM-NLMS. While the second proposed algorithm will merge pure CGM with modified NLMS algorithm so that this algorithm is called as CGMMNLMS algorithm. The MNLMS algorithm is regarded as variable regularization parameter that is fixed in the conventional NLMS algorithm. The two new proposed algorithms provides fast convergence time, higher interference suppression capability and low level of Mean Square Coefficients Deviation (MSD) and minimum Mean Square Error (MSE) at the steady state compared with the pure CGM and pure NLMS algorithms [17].

Bharti Kaushal et al.: In this paper Authors presented a channel Equalizer based on Adaptive Kalman Filter. The performance indexes used for measurement are mean square error (MSE), Rate of convergence and signal to noise ratio (SNR). This analysis is compared with some other Adaptive Equalizer like recursive least square (RLS) and experimental results shows that this approach gives a less mean square error which is better than other equalizer with fast rate of convergence. Also experimented for different communication system like QAM (64 QAM, 16 QAM, 4QAM), QPSK and BPSK, results shows that this equalizer is quite compatible with different digital modulator [18].

Shadma Pragi et al.: Author proposes the Long Term Evolution (LTE) is an area of research interest for next generation of wireless communication. OFDM is selected as the basis of LTE physical layer. Author presents the performance of OFDM UMTS based LTE system where minimum BER is measured for different modulators. The proposed model is compared with OFDMIDMA system in terms of BER. This paper concludes that it is quiet efficient and is applicable for next generation wireless communication system [19].

Farhana Enam et al.: Author proposes a specific approach to channel equalization for Orthogonal Frequency Division Multiplex (OFDM) systems. Inserting an equalizer realized as an adaptive system before the FFT processing, the influence of variable delay and multi path could be mitigated in order to reduce considerably the guard interval and to gain some spectral efficiency. The adaptive algorithm is based on adaptive filtering with an averaging for parameter update. Based on the development of a model of the OFDM system, through extensive computer simulations, author investigates the performance of the channel equalized system. The results show much higher convergence and adaptation rate compared to one of the most frequently used algorithms - Least Mean Squares (LMS)[20].

B. Siva Kumar Reddy et al.: Authors presents the OFDM technique is predominantly used during the implementation of WiMAX Physical layer. This paper focuses on the PHY-layer design aspects, namely, modulation and coding techniques associated. OFDMA, an extension of OFDM, makes use of Adaptive Modulation and Coding techniques to improve efficiency, fairness, and throughput in WiMAX. To achieve higher data rates and smaller BER's channel coding can be carried out in OFDM, called COFDM. The channel state information is fed back to the transmitter by the channel estimator. The simulation analysis presented includes comparison of BER vs. SNR for different modulation schemes. Here, LMS channel estimator is used [21].

Marwa Abdelfatah Abdelwab et al.: Author discusses the performance improvement of OFDM communication system using different channel coding techniques through AWGN channel model. These coding techniques include Reed Solomon coding, Convolutional coding, Concatenated coding (by combining Reed Solomon with Convolutional), and Interleaved concatenated coding techniques. Besides, a new algorithm produced to choose a good convolutional encoder design for a certain rate and memory registers [22].

Jayprakash Upadhyay et al.: The main objective of author is to transmit the data with low bit error rate in the noisy environment. Convolution coding based OFDM systems with channel equalization (CC-OFDM-CE) is used to reduce bit error rate & to overcome the distortions caused by phenomena like fading, delay spread and multipath effect. This work investigated the OFDM system performance for uncoded channel equalization using quadrature amplitude modulation (QAM) and BPSK. To further enhance the system, convolutional coding employed to OFDM system with channel equalization [23].

Irfan Y. Khan et al.: Authors investigated the OFDM system performance of uncoded adaptive modulation using quadrature amplitude modulation (QAM) and phase shift keying (PSK). To further enhance the system, authors employed convolutional coding to OFDM system. In OFDM system, the Signal to noise ratio is estimated at receiver and then transmitted to the transmitter through feedback channel, the transmitter according to the estimated SNR select appropriate modulation scheme and coding rate which maintain constant bit error rate lower than the requested BER. The obtained result shows that a significant improvements in terms of bit error rate (BER) and throughput can be achieved demonstrating the Superiority of the adaptive modulation schemes compared to fixed transmission schemes [24].

Hamza Khan et al.: Authors proposed a dynamic interference control method using the additive signal side lobe reduction technique and genetic algorithm(GA) in CR-OFDM systems. Additive signal side lobe reduction technique is based on adding a complex array to modulated data symbols in the constellation plane for side lobe reduction in OFDM system. In the proposed method, GA generates optimum additive signal which can effectively reduce the OOB signal interference to the primary system. The results show that the side lobes of the OFDM-based secondary user signal can be reduced by up to 38 dB and the PU interference tolerable limit can be satisfied at the cost of a minor addition in bit error rate (BER). The results further show that the proposed method delivers better performance as compared to non-GA additive signal method in terms of side lobe reduction as well as BER [25].
III. PROBLEM FORMULATION

After studying different approaches we observe that some of the algorithms provide low BER, fast convergence time, higher interference suppression capability and minimum Mean Square Error (MSE), but still there is need of an approach which may provide better result i.e. reduces the mean square error (MSE), low BER and shows faster convergence rate as compared to the other conventional algorithms.

IV. PROPOSED WORK

After analyzing several techniques we proposed a new iterative channel estimation algorithm technique to reduce the mean square error (MSE), BER & higher interference suppression capability and also faster convergence rate for communication system.

V. CONCLUSION

In this paper, we present a survey on channel Estimation for OFDM communication system concentrating on different techniques and emphasize on the problems, we also suggest an efficient solution to solve the above problem. Concatenation of the convolutional codes (CC) with interleaving in OFDM system and proposes a new iterative LMMSE channel estimation algorithm. The main objective is to transmit the data with low bit error rate with high convergence speed & low error rate in the noisy environment. Convolution coding will be employed to minimize the bit error rate (BER) of the received signal.

REFERENCES:

