
January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 498

INDEPENDENT MEDIATOR BASED LOAD-

BALANCING SYSTEM
1
Abhishek Kumar,

2
Dr. Achintya Singhal

Research Scholar, SSSUTMS SEHORE, MP

Associate Professor, Computer Science, Banaras Hindu University, VARANASI,UP

Abstract: Cloud computing shares information and give numerous resources to clients. Clients pay just for those resources as much they

utilized. Cloud computing stores the information and circulated resources in the open environment. The measure of information stockpiling

increments rapidly in open environment. In this way, load balancing is a fundamental test in cloud environment. Load balancing is conveyed

the dynamic workload over different hubs to guarantee that no single hub is overloaded. It helps in legitimate usage of resources .It

additionally enhance the execution of the framework. However this part of cloud computing has not been given careful consideration yet. In

spite of the fact that load balancing is being considered as an imperative viewpoint for other unified internet based computing environments,

for example, appropriated computing, parallel computing and so forth. Numerous algorithms had been proposed for finding the arrangement

of load balancing issue in these fields. In any case, not very many algorithms are proposed for cloud computing environment. Since cloud

computing is fundamentally not quite the same as these different kinds of environments, isolate load balancing algorithm should be proposed

to provide food its necessities. This work proposes an Independent Mediator Based Load-Balancing Algorithm (IMLB) which gives dynamic

load balancing to cloud environment. The proposed system has been actualized and found to give tasteful outcomes.

Keywords: Load Balancing Algorithm, Cloud computing, Load agent,

Introduction

 The cloud computing is an appropriated internet based worldview, intended for remote sharing and utilization of various resources and

administrations like stockpiling, computational abilities and applications and so forth with high unwavering quality over the extensive systems.

In any case, because of dynamic approaching solicitations, dynamic asset allotment is required in it. This innate dynamism in cloud computing

requires productive load balancing instruments. Load balancing concerns dissemination of resources among the clients or demands in uniform

way with the goal that no hub is overloaded or sitting inert. Like in, all other internet based circulated computing errands, load balancing is a

vital perspective in cloud computing. Without load balancing arrangement, productivity of some overloaded hubs can strongly corrupt at times,

prompting infringement of SLA. In conventional disseminated computing, parallel computing and matrix computing environments load

balancing algorithms are sorted as static, dynamic or blended planning algorithms in view of their temperament [6] where:

a)Static Load Balancing Algorithm is suitable for small distributed environments with high Internet speed andignorable communication delays.

b)Dynamic Load Balancing Algorithm focuses on reducing communication delays and execution time and thus are suitable for large distributed

environments.

c)Mixed Load Balancing Algorithm focuses on symmetrical distribution of assigned computing task and reducing communication cost of

distributed computing nodes.

Literature review

 Load balancing is one of important problems of heterogeneous computer networks. To address this problem,many centralized approaches have

been proposed in the literature but centralization has proved to raise scalability tribulations. Randleset. al [8] provided a comparative analysis of

various dynamic load balancing algorithms (Honeybee foraging, Biased Random Sampling, and Active Clustering). Their analysis has

highlighted that honeybee algorithm has maximum throughput with increased system diversity as compared to other two algorithms. The

honeybee algorithm is motivated from the behaviour of biological bees that move in search of their food. Similarly in load balancing there are

virtual servers offering virtual services. Every server requiring services calculates the profit and posts it on its advert board. The servers

interested in serving the request also calculate their profit and compare it with the colony profit. If case of high colony profit interested server

serves the current virtual server otherwise returns to the scout behaviour i.e. to choose another server randomly.

 Hu. et. al. [5] proposed genetic algorithm based scheduling mechanism for load balancing among virtual machines. This mechanism selects

the least loaded virtual machine for load transfer and optimizes the high migration cost. However due to large number of virtual machines and

frequent service requests in the data centre, there is chance of inefficient service scheduling. Xuet. al. [4] introduced a model for load balancing

in public cloud by using game theory. This algorithm is based on cloud portioning. They divided the cloud into three categories idle, normal and

overloaded on the basis of load degree. Zero load degree represents an idle cloud whereas if it lies between zero and highest value then the cloud

status is normal otherwise the cloud is overloaded. Here method of selecting range for load degree has been left unaddressed. Wang et. al. [13]

has proposed two static algorithms incloud environment. One is for Opportunistic load balancing in which incoming tasks received by a node

haveminimum execution time which is calculated by service manager. Second is Load Balance Min Min which improves the resource utilization

by maintaining the load balance. However both these algorithm are not suitable for CC as they do not support dynamic environments.

 Osman et al. [19] proposed a system to migrate legacy and network application by providing a virtualization layer on top of the operating

system and transferring a process group. They achieve lower downtime of service, but still use stop-and-copy approach. Nakaiet. al [20],

introduced an approach for client-based load distribution that adaptively changes the fraction of the load that each client submits to each service

replica to minimize overall response times. Bhaskaret. al. [2] proposed a mechanism working in two phases. In first phase it finds the CPU

http://www.jetir.org/

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 499

utilization and memory required for each instance and also finds the memory available for each virtual machine. In second phase, it compare the

available resources with required resources, if required resources are available then proceed further otherwise discard the request. Drawback of

this mechanism is that it lacks in scalability. Xuet. al[15] has introduced an agent based model using decision theory. The aim of this model is to

reduce the computational cost involved in load balancing. The migration concept used in this architecture transfers the load from overloaded

nodes to under loaded nodes.

Proposed work

 From the above analysis, there is a need of an algorithm which can offer most extreme resource usage, greatest throughput, least reaction time,

dynamic resource planning with adaptability and dependability. This work proposes an Independent Mediator Based Load-Balancing Algorithm

(IMLB) to address above issues. At whatever point a VM ends up plainly overloaded, the specialist organization needs to disperse the resources

in such a way, to the point that the accessible resources will be used in a legitimate way and load at all the virtual machines will stay adjusted.

IMLB component involves three operators: Load Agent, Channel Agent and Migration Agent. Load and channel operators are static operators

though relocation operator is a subterranean insect, which is an extraordinary class of versatile specialists. The purpose for sending ants is their

capacity to pick briefest/best way to their goal. Subterranean insect specialists are spurred from natural ants which look for a way from their

settlements to the sustenance source. At the same time they emit a substance called pheromone on ground [16] along these lines leaving a trail for

different partners to take after. However this concoction vanishes with time. At first the ants begin looking through a nourishment source

haphazardly, subsequently they may take after various ways to a similar source, however with entry of time, thickness of pheromone on the most

brief way increment and therefore all devotee ants begin following that way bringing about increment of pheromone thickness significantly

further. An engaging property of ants is that they move from source to goal for gathering wanted data or playing out an errand however they

don't really return to their source rather they demolish themselves at the goal just in this manner lessening pointless activity on the network.

Since load balancing in CC would require looking for under loaded servers and resources, subterranean insect operators suit the reason and

satisfy it properly without putting extra weight on network. Depiction of different specialists conveyed in IMLB is as per the following:

Load Agent (LA):It controls data strategy and keeps up all detail of a server farm. The significant work of a load operator is to compute the load

on each accessible virtual machine after allotment of another activity in the server farm.

VM_Load_Fitness table:It is utilized for keeping up record of particulars of every virtual machine of a server farm. It contains virtual machine

id, status of its memory devoured alongside CPU use, wellness esteem and load status of all VMs.

Channel Agent (CA):It controls the exchange strategy, determination arrangement and area approach. On accepting the demand from load

agent, the channel specialist will start some movement operators to other server farms for looking through the virtual machines having

comparative arrangement. It additionally keeps the record of all messages got from these operator’s response table.

Migration Agent (MA):These agents are started by channel agent. It will move to other server farms and speak with load agent of that server

farm to enquire the status of VMs display there, searching for the coveted setup. On getting the required data it impart the same to its parent

channel agent. A while later, it will remain at goal area, sitting tight for self-annihilate message from parent CA channel agent. The status of

movement operator might be live or demolished based on its relevance.

Fig.1: High level view of IMLB

http://www.jetir.org/

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 500

Load agent acts proactively to calculate load status of different VMs accessible in a DC. Intermittently it decides the workload of virtual

machines as far as accessible memory, accessible CPU use, and expected reaction time. A while later it figures the wellness estimation of each

virtual machine which straightforwardly relative to the memory of a machine and can be assessed by condition 1, 2 and 3:

µ available = µ total - µ used …..1

 µ available

γ (%) = × 100 ……2

µ total

The percentage of fitness values will gives the status of a virtual machine.

γ = ≤ 25% critical allocation

 25% normal allocation ……3

 Presently at whatever point a request arrives in a server farm, subsequent to distributing resources to it load agent will refresh

VM_Load_Fitness table to reflect exhibit status of all VMs. For this load agent computes level of μ and ʎ since these components influence

handling of approaching requests. Based on estimation of μ accessible, wellness esteem (ϑ) for every hub is created. For whatever length of time

that ϑ of a hub is more noteworthy than a limit (25%), for this situation VM status is ordinary. As and when wellness estimation of a VM turns

out to be not exactly or equivalent to limit esteem, load balancing should be performed. Load agent on watching basic status of a VM will

suggest and send the detail of that VM to the channel agent. At that point channel agent will start the relocation agents to other server farms for

looking through the virtual machines having comparable determinations. Movement agents being ants will travel one way. On achieving a goal

server farm, movement agent will initially send an affirmation message to its parent channel agent. A while later it will check with load agent of

that server farm for accessibility of virtual machines having comparable design as wanted. On the off chance that no such VM exists at that

server farm, relocation agent sends a <Not-Applicable> message back to its parent station agent and sits tight for <self_destroy> direction from

it. In any case, on the off chance that at least one VMs having wanted design are discovered, relocation agent additionally checks their μ and ϑ

sends it to channel agent.

 On getting another request in the server farm, the load agent will delineate particular with the accessible virtual machines. In the event that the

wellness estimation of a VM is typical, load agent continues future for assignment generally load agent will call channel agent for point of view

server farms having VMs with comparable arrangement for load balancing. As of now, channel agent examines reaction analysis table and

discovers <MAid, DCid,,VMid>for coordinating the request. In the event that more than one reasonable record is discovered, it picks the record

with biggest. Channel agent at that point speaks with comparing movement agent to affirm current ϑ of VM under thought. On getting reaction

from movement agent, channel agent again investigations all appropriate VMs, if still same VM has most astounding ϑ , it passes that record to

load agent for additionally load balancing, generally channel agent again speak with relocation agent for new reasonable VM. At that point

channel agent would send this data to load agent for additionally preparing.

Algorithm of Load Agent

Load_ Agent():

Input: Receive request from user;

Output: Allocate_ resources_with_IMLB;

Case I:

{

If (VM_Load_Table==empty())

Then allocate_requested_resources;

Maintain_VM_Load_Table;

µ available =µ total - µ used

µ available

 (%) = × 100

 µ total

If (>25) then

{

allocation_status:=Normal;

}

Else

{

allocation_status:=Critical;

initiateChannel_Agent(VMinitial);

}

Case II:

If (VM_Load_Table≠ empty)

Scan VM_Load_Table;

If(Load_Status(VMi) ==Critical)

http://www.jetir.org/

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 501

{

Call Channel_Agent(VMLoad_Balance);

Receive <DCid,VMidforload_ transfer>;

Transfer_request to DCid;

}

Else

Allocate_request to VMid;

Update VM_Load_Table;

}

From that above algorithm, the average response time is 97ms in case I and 113ms in case II.So it is clear that IMLB takes optimum time when

virtual machine becomes overloaded.It is revealed that IMLB algorithm provides desired results.

Conclusion

 This work concentrates on load balancing in distributed computing condition. Load balancing in distributed computing has been overlooked,

yet quick development in number of cloud clients has raised interest for load balancing systems. This work has proposed an independent agent

based load balancing component which gives dynamic load balancing to cloud condition. Significant commitment of this system is proactive

load count of VM in a DC and at whatever point load of a VM comes to close limit esteem, load agent starts scan for a competitor VM from

different DCs. Keeping data of applicant VM in advance, decreases benefit time. Result acquired through execution of this algorithm works

attractively.

References

[1] Bhaskar. R, Deepu. S.R and Dr. B.S. Shylaja (2012, September). Dynamic Allocation Method for Efficient Load Balancing in Virtual

Machines for Cloud Computing Environment. Advanced Computing: An International Journal (ACIJ), 3(5), pp. 53-61.

[2] Dr. PK Sinha, SR Dhore,(2010),Multi-Agent Optimized Load balancing Using Spanning Tree for Mobile Services, International Journal

Of Computer Application , 1(6).

[3] G. Xu, J. Pang, X. Fu. (2013, Feb). A Load Balancing Model Based on Cloud Partitioning for the Public Cloud. Tsinghua Science and

Technology.[Online].18(1),pp. 34-39.

[4] J. Hu, J. Gu, G. Sun, T. Zhao. A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing

Environment in Proc. PAAP, 2010, pp. 89-96.

[5] K. B. Mahieddine. An Evaluation of Load Balancing Algorithms for Distributing System Athesis of Doctor of Philosophy submitted in

The University of Leeds, School of Computer Studies, October 1991.

[6] M. Amar, K. Anurag, K. Rakesh, K. Rupesh, Y. Prashant (2011). SLA Driven Load Balancing For Web Applications in Cloud

Computing Environment, Information and Knowledge Management, 1(1), pp. 5-13.

[7] M.Randles,D.Lamb,AT.Bendiab. A Comparative Study into Distributed Load Balancing Algorithms for Cloud Computing. In Proc.

ICAINAW, 2010, pp.551-556.

[8] R. Ezumalai,G. Aghila, R. Rajalakshmi,(2010, Feb). Design and Architecture for Efficient Load balancing with Security Using Mobile

Agents.International Journal of Engineering &Technology(IACSIT). [Online]. 2(1), pp. 149-160.

[9] S Jing and K She (2011 April). A Novel Model for Load Balancing in Cloud Data Centre. Journal of Convergence Information

Technology. 6(4),pp. 29-38.

[10] S. Ray and A.D. Sarkar (2012, October). Execution Analysis of Load Balancing Algorithms in Cloud Computing Environment.

International Journal on Cloud Computing: Services and Architecture (IJCCSA). 2(5), pp. 1-13.

[11] S. S. Moharana, R. D. Ramesh &D.Powar,(2013, May). Analysis of Load Balancers In Cloud Computing. International Journal of

Computer Science & Engineering (IJCSE). [Online]. 2(2), pp.: 101-108.

[12] S.C. Wang,K.Q. Yan, W.P.Liao, S.S. Wang. Towards a Load Balancing in a three-Level Cloud Computing Network. In Proc. ICCSIT,

2010, pp.108-113.

[13] T. Desai, J. Prajapati,(2013, Nov). A Survey of Various Load Balancing Techniques And Challenges In Cloud Computing. International

Journal of Scientific & Technology Research, [Online]. 2(11), pp.158-161.

[14] Y.Xu, L. Wu, L. Guo, Z.Chen, L.Yang, Z.Shi. An Intelligent Load Balancing Algorithms Towards Efficient Cloud Computing. In Proc.

AAAI Workshop, 2011, pp. 27-32.

[15] Z Zhang and X Zhang. A Load Balancing Mechanism Based on Ant Colony and Complex Network Theory in Open Cloud Computing

Federation.In Proc. ICIMA, 2010, pp. 240-243.

[16] Z.Chaczko, V. Mahadevan, S.Aslanzadeh, C. Mcdermid. Availability and Load Balancing In Cloud Computing. In Proc. ICCSM , 2011,

pp.134-140.

[17] Clark, C., Fraser, K., Hand, S., Jacob, G.H.Live migration of virtual machines. In: 2nd ACM/USENIX Symposium on Network

Systems, Design and Implementation (NSDI), pp. 273–286 (2005).

[18] Osman, S., Subhraveti, D., Su, G., Nieh, J. The design and implementation of ZAP: a system for migrating computing environments.

ACM SIGOPS Oper. Syst. Rev. 36(SI), 361–376 (2002).

[19] Nakai, A., Madeira, E., Buzato, L.E. Improving the QoS of web services via client-based load distribution. In: Proceedings of the

29
th

Brazilian Symposium on Computer Networksand Distributed Systems (SBRC2011) (2011).

[20] Cardellini, V., Colajanni, M., Yu, P.S. Request redirection algorithms for distributed web systems. IEEE Trans. Parallel Distrib. Syst.

14(4), 355–368 (2003).

[21] A Keren and A Barak (2013 January). Opportunity Cost Algorithms for Reduction of I/O and Interposes Communication Overhead. In a

Computing Cluster. IEEE Trans. 14 (1), pp. 399-446.

http://www.jetir.org/

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 502

[22] Kalaivanan, M., and K. Vengatesan. "Recommendation system based on statistical analysis of ranking from user." International

Conference on Information Communication and Embedded Systems (ICICES), , pp. 479-484. IEEE, 2013.

[23] P. Sanjeevikumar Vengatesan K, R. P. Singh, S. B. Mahajan,” Statistical Analysis of Gene Expression Data Using Biclustering

Coherent Column”, International Journal of Pure and Applied Mathematics, Volume 114, Issue 9, Pages 447-454

http://www.jetir.org/

