DIFFERENT DOMESTIC DESIGNS OF SOLAR STILLSS-A REVIEW

Akshay Tavse, Chinmay Kute, Chirag Patel, Hrushikesh Kulkarni, Prof. Lokesh R. Dhumne

Abstract: The availability of safe, fresh and clean potable water is the major problem faced by most of the countries in the world. Many water purification technologies are developed out of which solar distillation or desalination is being most economical and sustainable technology under development. The solar stills provide a great relief to the remote areas where advanced purification technologies such as reverse osmosis, UV, electro dialysis cannot be used due to cost constraints. In last few decades there are number of solar still designs developed. This article reviews different solar still designs used at domestic level relative to each other. The solar stills are not commercialised or standardized due to their limited yields. However with the current research and improvements they can be successfully commercialised for future domestic applications.

Keywords: Solar Still, PCM,

1. Introduction
The basic requirement of all living organisms is a drinking water. Currently the availability of clean water resources is the major issue for humans. Only 1% potable water complying the standards is available out of 71% water covering earth’s surface. Reverse osmosis, Ozone, UV, electro dialysis, activated carbon filtration and vapour compression are used to provide clean portable water. However, the costly technologies are affordable for people living in the remote areas. The remote areas can get supply of water at very low cost by using solar still as the alternate renewable energy technology. The maintenance of solar still is very low and easy to fabricate on small scale.

For desalination of brackish water into potable water the heat obtained from solar radiation is used. Pure water can be developed using different designs of solar stills. Lower yields (approx. 2-3 l/m² per day) and low thermal efficiency (max. 30%) restricts their wide use in domestic life. Hence to increase the yield of this system has become todays need. Many researchers have proposed different methodology to enhance the productivity and thermal efficiency of solar still. This paper reviews different designs of solar still used at domestic level.

2. Classification of Solar Still
Many research work has been carried out on designs of solar still by various researchers throughout the world.

Solar still includes Single basin single slope, Single basin double-slope, Hybrid solar still, and Hemispherical, Triangular and Pyramid type solar still. Commonly used material for fabrication of solar still are listed in Table1.

Table 1: Materials used for fabrication of solar still

<table>
<thead>
<tr>
<th>Materials</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plexiglass, toughened glass and polythene</td>
<td>Glass cover</td>
</tr>
<tr>
<td>Fibre reinforced plastic, wood, G.I sheet</td>
<td>Basin</td>
</tr>
<tr>
<td>Glass wool and ceramic wool</td>
<td>Insulation</td>
</tr>
<tr>
<td>Aluminium cladding</td>
<td>Supporting structure</td>
</tr>
<tr>
<td>Sand, photo catalyst, sponge, wax storage</td>
<td>Heat storage</td>
</tr>
</tbody>
</table>

3. Review of Solar Still based on design

3.1 Single basin single slope solar still
Single basin single slope solar still was developed by Sahoo at centre of energy IIT Guwahati, with base area of 0.73m×0.73m, is fabricated from 4mm FRP the 8mm thick, make an angle of 10° with the horizontal edge of container using rubber gasket fig.1.

The phase change material luric acid was used by Swetha and Venugopal as heat storage material increased distillate output 36%. Also galvanised iron sheet used as heat reservoir, increased distillate output 13% Fig.2
The single basin single slope solar still was fabricated Phadatare and Verma. The plexiglass (3mm thick) is used for manufacturing of bottom and all sides of still. To reduce leakage of vapour to the surrounding the solar still was sealed. The unit consist of an acrylic box which as four sides and base. The overall dimensions of solar still are: length= 176cm, width=85cm, lower side height=32cm, higher side height=60cm, basin liner area \(A_s=1.446\,m^2\) and the cover area\(A_c=1.44\,m^2\) Fig.3.

Abdallah represent modified design of single slope solar still. The modifications in design are as follows : (a) fixing interior reflecting mirrors, (b) flat basin is replace by step wise water basin, and (c) sun tracking system is introduce in coupling of step wise solar still because it gives highest thermal performance with an average of 380%. Up to 30% thermal performance is improved due to use of internal mirrors. Up to 180% performance was enhanced by using of step wise basin. Fig.4a and b.
Ali Samee fabricated simple single solar still. With basin area of 0.54\(m^2\), fabrication is done by using galvanized iron sheet having thickness of 18 gauge for basin area of 0.54\(m^2\) the daily distillate output of 1.7 l/day was obtained with average efficiency 30.65\% Fig.5.

3.2. Single basin double slope solar still output yield was obtained and observed 75\% increment in productivity using sand as a heat reservoir Fig.6.

Kalidasa Murugavel proposed a single basin double slope solar still, tested with a layer of water and various sensible heat storage materials like cement concrete pieces, quartzite rock, washed stones, red brick pieces and iron scrap. For increasing the yield, they focussed on the study to find the best heat storage material and found that the most effective basin material is 3/4in. sized quartzite rock Fig.7.
Kalidasa Murugavel made a single basin double solar still. To reduce heat loss through bottom, outer basin was lined with concrete. By using surface heating effect i.e. jute cloths and aluminium fins of size 65mm×45mm covered with the black cotton were used Fig 8.

Fig.8 Kalidasa’s still with aluminium fin covered with black cloth in the basin

Zeroual used two identical solar still prototypes, one was used as reference unit and other was investigated. To enhance the heat transfer rate inside basin, the investigated still is having aluminium tray. To prevent the heat leakage silicon sealent is used. When cooling its north glass cover by flowing water over glass cover, the average daily was improved by about 11.82% Fig.9.

Fig.9 Zeroual’s solar stills

Rajamanickam and Ragupathy proposed two experimental setup single slope and double slope of same area and at same and fixed orientation they tested with different water depth. With water depth 0.01 m and DS solar still with north-south orientation the maximum distillate output of 3.07 l/m²/day was obtained Fig. 10(a) and(b).

Fig.10 (a) Rajamanickam’s single slope

Fig.10 (b) Rajamanickam’s double slope

3.3 Hybrid Solar Still

Singh developed and fabricated a photovoltaic thermal double slope active solar still. The system consists of three components namely double slope solar still, photovoltaic integrated FPC’s and DC water pump. FRP of low thermal conductivity and 0.005 m of wall thickness is used to fabricate single basin double slope solar still having 2 m ×1 m of basin area. At the bottom of the one of the collector a photovoltaic module of 36 cells has been integrated. In forced mode of operation 40 W DC water pump is used to circulate water inside basin. The module of size 0.55×1.25 m² is designed. Fig 11
Fig. 11 Singh’s hybrid single basin DS solar still integrated with PV collectors

Dev and Tiwari at the Solar Energy park, IIT, Delhi. The set up consists of 1x1 m² basin area of single slope solar still with 30° inclination connected with two flat plate collectors. The FPC’s are connected in series having total effective area 4 m² with the help of an insulated galvanised iron pipe of 1.25 cm of diameter. It is integrated with photovoltaic module with its lower temperature zone to run DC motor of rating 60 W, 2800 rpm. Fig.12

Fig. 12 Dev and Tiwari’s hybrid solar still.

Omara used wicks solar still with evacuated solar water heater to increase the productivity and made a hybrid desalination system. The productivity of water is increased by almost 114% than a conventional still for double layer square wick solar still at 30° base slope angle. The average efficiency calculated by daily performance was obtained as 71.5%. When hot brackish water was fed during night time, the distillate productivity was increased by 215% for DLSW. Fig.13

Fig. 13 Omara’s Hybrid System

Conclusion

Variety of solar still designs from conventional to hybrid concepts were reviewed in this paper. This review will enhance the understanding of previously designed solar stills. This paper will provide a way to conceptualize the optimum designs with better performance. The following section summarizes the key design aspects of solar still:

Evacuated solar water heater
Brackish water feeding tank
MPLC
PC
Conventional still
Distilled water
Double layers wick still
Single layer wick still
Brine to waste

Fig. 13 Omara’s Hybrid System
The factors such as location, type, quality of saline water availability of required materials economics etc. affect the selection of specific type of solar still. The performance of solar still gets affected by design parameters like basin area, orientation of still, depth of water, temperature of inlet water, water-glass temperature difference.

The metrological parameters like availability of solar radiation, wind velocity and surrounding temperature play an important role in performance of solar still.

The hybrid solar still system with evacuated solar water heater gives the maximum output so far around 12.48 l/m²/day.

The range of maximum thermal efficiency obtained for different designs varies from 17.4-45%.

Solar desalination system is not available for commercial or domestic in spite of lot of advancements. Economical solar stills with higher distillate output, more efficient and optimized domestic designs must be developed for solving the problems of water scarcity in future.

References

[13] Table 3 Economic analysis of the different designs. Types of still References no. System unit cost in US $ Daily yield output Per