Optimization of two hinge steel arch using MATLAB

¹Ashutosh pande, ²Satyen Ramani

¹Post Graduate Student, ²Professor

Department of Civil Engineering

SAL Institute of Technology and Engineering Research, Ahmedabad, India

Abstract— Two hinge steel arch is statically indeterminate structure. the degree of static indeterminacy is one for two hinged arch. the strain energy of a statically indeterminate structure is calculated by least work method. In this paper solid rectangular section of two hinge steel parabolic arch is optimized. Horizontal loading is not be considered for this study. Deflection at crown of two hinge steel arch calculated by unit load method. Optimization of two hinge steel arch done in MATLAB using artificial neural network(ANN) toolbox. Analysis of two hinge steel arch is carried out by making script in MATLAB. Cross section area of solid rectangular section and height to span ratio considered as a variable for optimization. Maximum deflection at crown, maximum bending and axial stresses, maximum shear stress consider as a constraint for optimization. Weight of arch is taken as a objective function for optimization. Supervised learning method used in a ANN toolbox. Type of neural network used for optimization is single-layer feed forward network.

Index Terms—weight optimization, least work method, supervised learning, single-layer feed forward method

I. INTRODUCTION

In the case of two-hinged arch, we have four unknown reactions, but there are only three equations of equilibrium available. Hence, the degree of static indeterminacy is one for two hinged arch. The fourth equation is written considering deformation of the arch. The unknown redundant reaction is calculated by noting that the horizontal displacement of hinge at B is zero. In-general the horizontal reaction in the two hinged arch is evaluated by straightforward application of the theorem of least work which states that the partial derivative of the strain energy of a statically indeterminate structure with respect to statically indeterminate action should vanish. Hence to obtain, horizontal reaction, one must develop an expression for strain energy. Typically, any section of the arch is subjected to shear force V, bending moment M and the axial compression N. unit load method is used for find a vertical displacement at crown.

Optimization is the act of obtaining the best result under given circumstances. In design, construction, and maintenance of any engineering system, engineers have to take many technological and managerial decisions at several stages. The ultimate goal of such decisions is either to minimize the effort required or to maximize the desired benefit. Since the effort required or the benefit desired in any practical situation can be expressed as a function of certain decisions variables. Optimization can be define as the process of finding the conditions that give the maximum or minimum value of a function. Artificial neural network technique is used for optimization. As soon as 1943 Warren McCulloch and Walter Pitts introduced models of neurological networks, recreated threshold switches based on neurons and showed that even simple networks of this kind are able to calculate nearly any logic or arithmetic function. Furthermore, the first computer precursors ("electronic brains") were developed, among others supported by Konrad Zuse, who was tired of calculating ballistic trajectories by hand. If we compare computer and brain1, we will note that, theoretically, the computer should be more powerful than our brain: It comprises 109 transistors with switching time of 10–9 seconds. The brain contains 1011 neurons, but these only have a switching time of about 10–3 seconds. Weight of the two hinge steel arch optimized by ANN. Supervise learning is used as a learning method and single-layer feedforward network is used as a type of neural network.

II. METHODOLOGY IN MATLAB STUDY

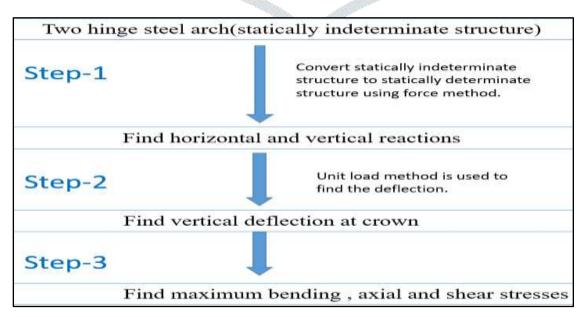
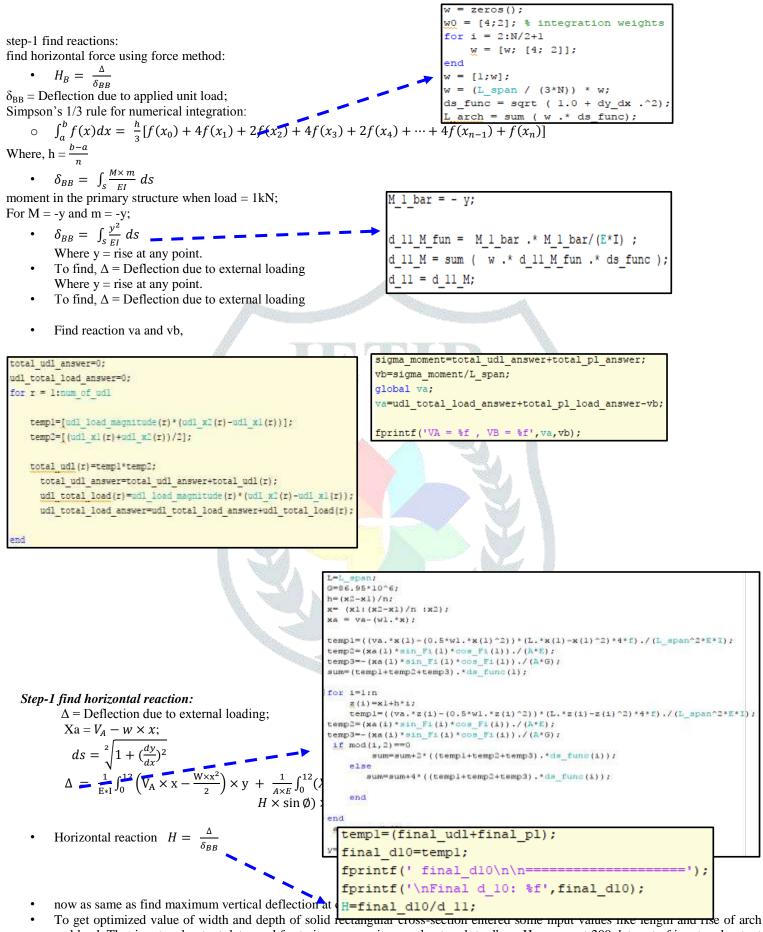



Fig 1. Steps for analysis of two hinge steel arch

• To get optimized value of width and depth of solid rectangular cross-section entered some input values like length and rise of arch and load. That input and output data used for train a neuron in neural network toolbox. Here we get 200 data set of input and output for train a neuron in neural network toolbox. This loops function calls for analysis of arch for different values of load, length and rise of arch and range of width 150 mm to 750 mm and range of depth 75 mm to 325 mm of rectangular cross section.

0.4850

0.4950

0.5000

0.5050

0.5100

0.5200

0.5250

0.5300

0.5350

0.5400

0.5450

0.5500

0.5550

0.5600

0.2425

0.2475

0.2500

0.2525

0.2550

0.2600

0.2625

0.2650

0.2675

0.2700

0.2725

0.2750

0.2775

0.2800

0.6750

0.6800

0.6900

0.6850

0.6900

0.6950

0.7000

0.7050

0.7100

0.7150

0.7200

0.7250

0.7300

0.3375

0.3400

0.3450

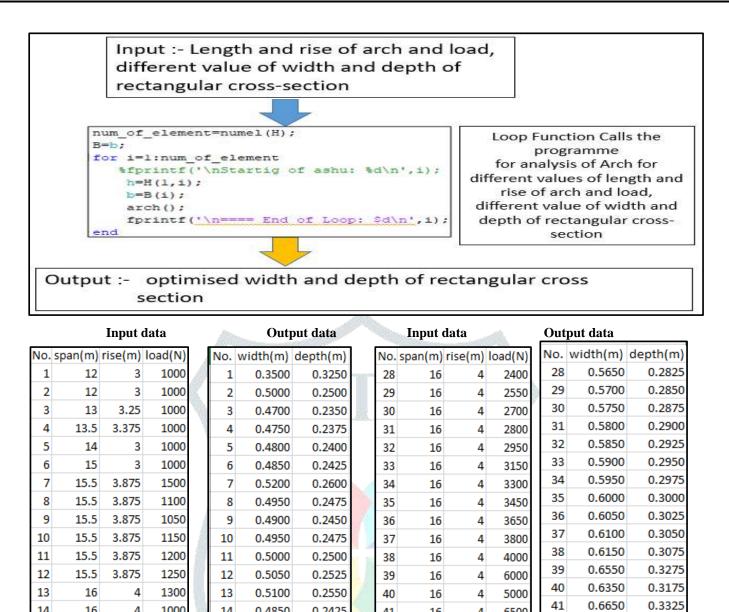
0.3425

0.3450

0.3475

0.3500

0.3525


0.3550

0.3600

0.3625

0.3650

0.3675

© 2018 JETIR May 2018, Volume 5, Issue 5

www.jetir.org (ISSN-2349-5162)

Input				Output			Input da				Output		
		rise(m)		No.		depth(m)	No.	span(m)		load(N)	No.	width(m)	depth(m)
55	16	4	12750	55		0.3400	82	18		2900	82		0.2975
56	16	4	13000	56		0.3425	83	18		3050	83		0.3000
57	16	4	13500	57		0.3450	84	18		3250	84		0.3025
58	18	4.5	1000	58		0.2475	85	18		3500	85		0.3075
59 50	18	4.5	800	59		0.2375	86	18		3750	86		0.3050
60	18	4.5	850	60		0.2400	87	18		3600	87		0.3100
61 62	18	4.5	900 950	61		0.2425	88	18		3850	88		0.3075
62 63	18 18	4.5 4.5	1050	62		0.2450	89	18		3750	89 90		0.3150
03 64	18	4.5	1050	63		0.2500	90 91	18 18		4250 4150	90		0.3125
04 65	18	4.5	1150	64 65		0.2525	91	18		5000	91		0.3223
66	18	4.5	1200	66		0.2575	93	18		4600	93		0.3200
67	18	4.5	1350	67		0.2550	94	18		4800	94		0.3250
68	18	4.5	1450	68		0.2600	95	18		5250	95		0.3275
69	18	4.5	1600	69		0.2675	96	18		5500	96		0.3300
70	18	4.5	1500	70		0.2650	97	18		5750	97		0.3325
71	18	4.5	1700	71		0.2700	98	18		6000	98		0.3350
72	18	4.5	1600	72		0.2675	99	18		6250	99		0.3375
73	18	4.5	1800	73		0.2725	100	18		6500	100		0.3400
74	18	4.5	1900	74		0.2750	101	18		6750	101	0.6850	0.3425
75	18	4.5	2000	75		0.2775	102	18		7000	102	0.6900	0.3450
76	18	4.5	2100	76	0.5600	0.2800	103	18	4.5	7250	103	0.6950	0.3475
77	18	4.5	2200	77	0.5650	0.2825	104	18	4.5	7500	104	0.7000	0.3500
78	18	4.5	2300	78	0.5700	0.2850	105	18	4.5	8000	105	0.7050	0.3525
79	18	4.5	2450	79	0.5750	0.2875	106	18	4.5	8500	106	0.6000	0.3000
80	18	4.5	2600	80	0.5800	0.2900	107	20	5	1000	107	0.6100	0.3050
81	18	4.5	2750	81	0.5850	0.2925	108	20	5	1100	108	0.6050	0.3025
In	iput dat	ta			Output o	lata	1	Inp	out data	19	_	Output	t data
No. s	pan(m)	rise(m)	load(N)	No	width(m)	depth(m)	No.	span(m) rise(m)	load(N)	No.	width(m)	depth(m
109	20	5	1150	109	0.6150	0.3075	136	i 10	2.5	900	136	0.4150	0.207
110	20	5	1200	110	0.6200	0.3100	137	/ 10	2.5	950	137	0.4200	0.210
111	20	5	1300	111	L 0.6250	0.3125	138	10	2.5	1000	138	0.4250	0.212
112	20	5	1400	112	0.6300	0.3150	139	10	2.5	1050	139	0.4300	0.215
113	20	5	1500	113	0.6400	0.3200	140	10	2.5	1100	140	0.4350	0.217
114	20	5	1450	114	0.6350	0.3175	141	. 10	2.5	1150	141	0.4400	0.220
115	20	5	1600	115	0.6500	0.3250	142	10	2.5	1250	142	0.4450	0.222
116	20	5	1550	116			143	10	2.5	1400	143	0.4500	0.225
117	20	5	1700	117			144	10			144	0.4550	0.227
118	20	5	1800	118			145				145		
119	20	5	1900	119			146				146		
120	22	5.5	1000	120			147				147		
121	22	5.5	1050	121			148			1950	148		
122	22	5.5	1100	122			149				149		
122	22	5.5	1150	122			150				150		
123	22	5.5	1200	12			151				151		
124	22	5.5	1250	125			151				151		
							152				152		
126	22	5.5	1350	126			153				153		
127	22	5.5	1450	127			154				154		
128	22	5.5	1550	128							155		
129	22	5.5	1500	129			156				150		
130	22	5.5	1600	130			157						
131	22	5.5	1700	131			158			3500	158		
132	22	5.5	1650	132			159				159		
133	22	5.5	1750	133	3 0.6900	0.3450	160				160		
134	22	5.5	1800	134 135			161 162				161 162		

JETIR1805082 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

© 2018 JETIR May 2018, Volume 5, Issue 5

Input data

No.

ut data			(Output data	l
span(m)	rise(m)	load(N)	No	. width(m)	depth(m)
10	2.5	4750			
10	2.5	5000	164	4 0.5550	0.2775
10	2.5	5250	16	5 0.5600	0.2800
10	2.5	5500	16	5 0.5650	0.2825
10	2.5	5750	16	7 0.5700	0.2850
10	2.5	6200	16	3 0.5750	0.2875
10	2.5	6600	16	0.5800	0.2900
10	2.5	7000	170	0.5850	0.2925
10	2.5	7400	17	0.5900	0.2950
10	2.5	7800	17	0.5950	0.2975
10	2.5	8200	17	3 0.6000	0.3000
10	2.5	8600	174	4 0.6050	0.3025
10	2.5	9000	17	5 0.6100	0.3050
10	2.5	9400	17	5 0.6150	0.3075
10	2.5	9800	17	7 0.6200	0.3100
10	2.5	10200	17	3 0.6250	0.3125
10	2.5	10600	179	0.6300	0.3150
10	2.5	11100	180	0.6350	0.3175
10	2.5	11600	18	0.6400	0.3200
10	2.5	12100	18	2 0.6450	0.3225
24	6	900	18	3 0.6450	0.3225
24	6	850	184	4 0.6400	0.3200
24	6	800	18	5 0.6350	0.3175
24	6	950	18	5 0.6500	0.3250
24	6	1000	18	7 0.6550	0.3275
24	6	1050	18	0.6600	0.3300
24	6	1100	18	0.6650	0.3325
. .	_			A 3887	

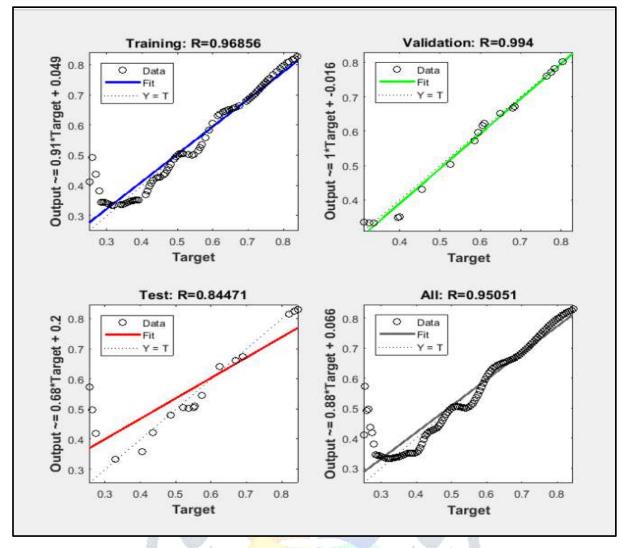
www.jetir.org (ISSN-2349-5162)

Output data

Input data

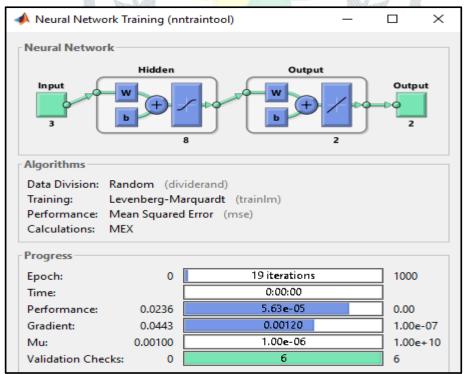
No. span(m) rise(m) load(N)

	_	
No.	width(m)	depth(m)
190		
191	0.6750	0.3375

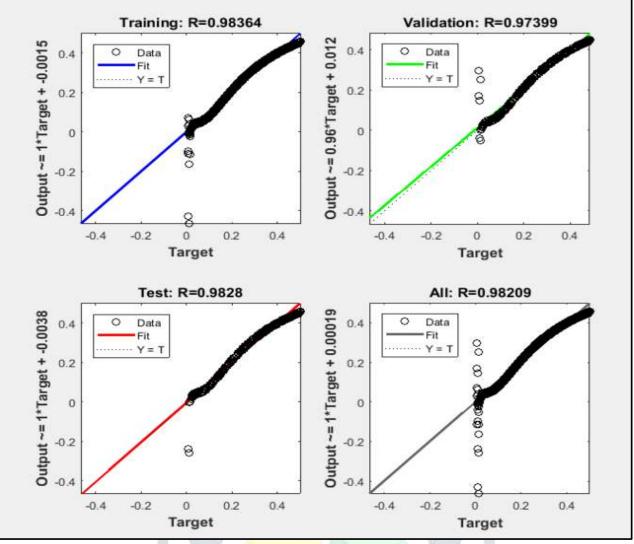

III. neural network

Now optimize width and depth of cross-section using artificial neural network:

- Input data in ANN:
- 1) Load on arch:
- 2) Length of arch:
- 3) Rise of arch:
- Target data in ANN:
- 1) Optimized depth of cross section:
- Optimized width of cross section: 2)
- Training of neuron 5 neuron hidden layer

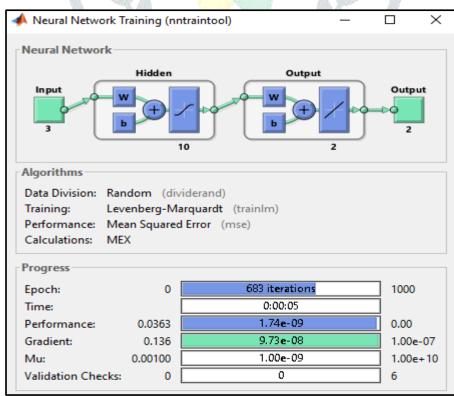

📣 Neural Network Training (nntraintool) - 🗆 🗙									
Neural Netwo									
hand (Hidden Output								
3	b + c + c + c + c + c + c + c + c + c +								
Algorithms	Algorithms								
	Data Division: Random (dividerand)								
-	Training: Levenberg-Marquardt (trainlm)								
	Performance: Mean Squared Error (mse) Calculations: MEX								
Progress	Progress								
Epoch:	0	1000	iterations		1000				
Time:		0:	00:05						
Performance:	0.0520	4.4	15 e-0 8		0.00				
Gradient:	0.143	5.0	4 е-0 5		1.00e-07				
Mu:	0.00100	1.0	00 e -09		1.00e+10				
Validation Che	cks: 0	p	0		6				

Neural network training

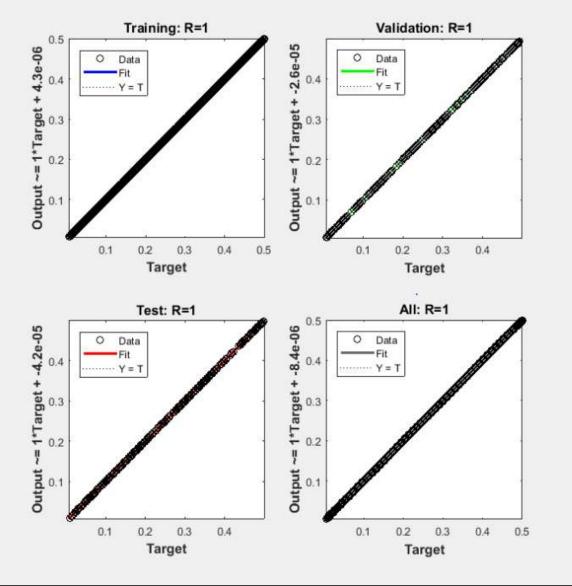


Neural network training Regression

• 8 neuron in hidden layer



Neural Network Training




```
10 neuron in hidden layer
```

Neural network training Regression

Neural Network Training

Neural network training Regression

IV. RESULT DISCUSSION

We used different neuron in hidden layer to improve the final outcome of the trained neural network. Here 5,8,10 neurons are used in hidden layer to reach the desired outcome for optimization. Result shows that 10 neuron in hidden layer gives the best optimization result compare to others.

Number of neuron in hidden layer	5	8	10	Exact (original)
Width(m)	0.2164	0.2059	0.2015	0.2015
Depth(m)	0.2057	0.1990	0.1965	0.1965

Table 1 COMPARISON BETWEEN DIFFERENT NEURON IN HIDDEN LAYER OF NN

V. CONCLUSION

Optimization of weight of two hinge steel arch is very difficult task to perform. But with use of neural network it can be done very efficiently. This optimization method is little time consuming while training of dataset in neural network, but once it trained after that we easily find the optimization result within fraction of time. In this paper we take two hinge steel parabolic arch with full span UDL and no horizontal force considered in this paper.

The conclusions achieved from present work are:

1. The efficiency of the Feed Forward Back-Propagation algorithm for training neural network and for optimization was examined and found to be good.

2. This seamless procedure reduces the post processing time and gives all the optimized area results for user verification in a single click of the button with well documented format.

In the present work, Optimization of two hinge steel arch is to perform. For that we use various variables like height to span ratio, load and width and depth of solid rectangular cross-section. For further study, horizontal force should be taken.

VI. ACKNOWLEDGMENT

I would like to extend my sincere thanks to Prof. Satyen D. Ramani for his guidance and constant support in the project.

REFERENCES

- [1] Trupti Sonavane "ANALYSIS OF ARCHES" M.Arch, Virginia Tech, 2006, page no. 1-160.
- [2] Jin Cheng "OPTIMUM DESIGN OF STEEL TRUSS ARCH BRIDGES USING A HYBRID GENETIC ALGORITHM" Journal of Constructional Steel Research 66 (2010) page no. 1011 - 1017.
- [3] José Luis Manzanares Japón, Ignacio Hinojosa Sánchez-Barbudo "NON-LINEAR PLASTIC ANALYSIS OF STEEL ARCHES UNDER LATERAL BUCKLING" Journal of Constructional Steel Research 67 (2011),page no. 1850–1863.
 [4] Y. Wang, A.P. Thrall, T.P. Zoli "ADJUSTABLE MODULE FOR VARIABLE DEPTH STEEL ARCH BRIDGES" Journal of
- Constructional Steel Research 126 (2016), page no.163-173.
- [5] Yan-Lin Guo, Hang Chen, Yong-Lin Pi "IN-PLANE FAILURE MECHANISMS AND STRENGTH DESIGN OF CIRCULAR STEEL PLANAR TUBULAR VIERENDEEL TRUSS ARCHES "Engineering Structures 151 (2017), page no. 488-502.
- [6] Zhen Guo, Yongchao Wang, Nan Lu, Haidong Zhang, Fei Zhu, "BEHAVIOUR OF A TWO-PINNED STEEL ARCH AT ELEVATED TEMPERATURES" Thin-Walled Structures 107 (2016), page no. 248–256.
- [7] Book, Jasbir S. Arora "INTRODUCTION TO OPTIMUM DESIGN". (2004), page no. 1-751.

