Micellar Spectral, Potentiometric and Biological Investigations on Mn (II)- Thiosemicarbazone Systems

Uma Rathore¹ and N. Bhojak² ¹Assistant professor, ²Associate professor ^{1, 2}GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC Grade -A), Bikaner MGS University, Bikaner 334 003.

Abstract: The therapeutic importance of thiosemicarbazone group containing ligands has promoted the selection of this class of ligands and their complexes for the study. Ligand 3, 4, 5-Trimethoxybenzaldehyde thiosemicarbazone [3, 4, 5-TBT] has been synthesized. The present work describes the synthesis, characterization, solution and biological investigations on Mn (II)-thiosemicarbazone complexes. Solution studies on the complexes have also been carried out in different micellar [HTAB, SDS, TX-100] systems at 25°C and data have been compared with ethanol water mixture. Stability constants and molar ions in 60% ethanol were determined. Metal – ligand (M/L) ratio and formation constants have been determined in Brij-35 and TX-100 micellar system by conductometric method.

Keyword: Thiosemicarbazone, biological, formation constants, Brij-35 and TX-100

I. INTRODUCTION

Thiosemicarbazones have been the subject of studies not only for coordination chemistry reasons, but for pharmacological as well, due to their good complexing properties and significant biological activity [1]. Thiosemicarbazones have attracted a crescent interest in recent years due to their biological properties, such as antiviral, antibacterial, anti-malarial, antifungal and antitumoral activities [2]. The research on coordination chemistry and analytical applications of thiosemicarbazones and its metallic derivatives has increased considerably [3].

In this paper we are reporting the synthesis, stability constant, association constant and Gibbs Free energies of Mn (II) complexes with thiosemicarbazide based ligand : 3, 4, 5-Trimethoxybenzaldehyde thiosemicarbazone [3, 4, 5-TBT].

3, 4, 5-Trimethoxybenzaldehyde

Thiosemicarbazide 3, 4, 5-TrimethoxybenzaldehydeThiosemicarbazone

Synthesis of ligands

II. MATERIALS AND METHODS

Materials

All the chemicals used were of AR grade and procured from Himedia. Metal salt were purchased from E. Merck and were used as received. All solvent used were of standard/spectroscopic grade.

Synthesis of ligand:

A hot solution of thiosemicarbazide (1.82 g, 20 mmol) in presence of methanol was added to benzaldehyde. A constant stirring was given to mixture and refluxed for 4 hours. The mixture was filtered and concentrated by slow evaporation. After some time crystals were washed with cold ethanol and dried in vacuum [4].

Metal ligand complexes were formed by potentiometric titrations. Ligands and metal complexes were analyzed by TLC method.

3. PROCEDURE

Potentiometric titration :

pH metric studies has been done with the help of pH meter (pH meter 802). The pH meter was switched on half an hour before begin the titrations. Instrument was calibrated with aqueous standard buffer solution of pH 4.0, 7.0, 9.0 prepared from buffer tablets. The experiment procedure involved the titration of

Solution (i): 1.00 ml HNO₃ (0.004 M) + 5 ml KNO₃ (0.1 M)

Solution (ii): Solution (i) + 1.25 ml of ligand (0.0005M) and

Solution (iii): Solution (ii) + 0.625 ml of CoCl₂. nH₂O (0.00025 M)

Volume of all these reaction mixtures was made up to 25 ml using 60% ethanol. For the titration in micellar system, 1.20 ml (5 mmol) of TX-100, 2.25 ml (5 mmol) of SDS and 2.0 ml of HTAB (5 mmol) were added separately in each set of the above reaction mixtures before making up the volume. The reaction mixtures of ethanol and water – ethanol (1:1) solutions were also prepare . The reaction mixtures were titrated individually against standard 0.05 M KOH.

After each addition of a certain amount of alkali to the the reaction mixture the change in the pH of the solution is measured. The graphs were plotted against values of pH and volume of alkali added. Using Irving and Rossotti stability constants of the metal ligand complexes were calculated from the titration curves [5].

Biological study:

Biological investigation has been carried out by disc diffusion method. The agar was prepared in plate and microorganisms were cultivated on to the surface of the agar plate. Broth was applied on agar plate then filter paper discs impregnated with different type of samples, were placed on the agar. After incubation of the plates the diameter of the zone of inhibition (ZI) of microorganism growth around each disc was measured [6].

4. RESULT AND DISCUSSION

Potentiometric titration:

Proton-ligand stability constants (pK)

The proton-ligand formation curves were estimated by plotting graphs between the values (\overline{n}_A) Vs pH readings. The pK values were obtained from formation curve by noting the pH at which (\overline{n}_A) = 0.5 and (\overline{n}_A) = 1.5. The proton-ligand formation number

 (\bar{n}_A) were calculated by Irving and Rossotti expression [5]. The result indicated that the ligand was mono dissociable.

$$\tilde{n}_A = \gamma \underbrace{(V_L - V_o)(N + E^0)}_{(V_b + V_o)T_L}$$

-----(1)

Where, V^0 = Initial volume of solution (25 ml), E^0 = Initial concentration of free acid (HNO₃), Y= Number of dissociable protons from ligand, T_L is concentration of ligand in solution, $(V_L - V_a) = V_a$ Volume of alkali (KOH) consumed by acid and ligand on the same pH [7].

Metal ligand stability constant (logK):

The average number of metal ions associated with the ligand (\bar{n}) at different pH values was estimated from the curve plotted between n- and pH. Metal ligand stability constant (logK) were obtained by the half integral method by plotting graph between (\bar{n}) vs. pL.

 $\bar{n} = \frac{(V_{M} - V_{L})(N + E^{0})}{(V_{0} + V_{L})n_{A}^{2}T_{w}}$ $pL = \log_{10} \left[\frac{\sum_{n=0}^{m-1} \beta_{a}^{H}(a_{nN}\log pH)}{T_{L} - n^{2}T_{M}}, \frac{V_{0} + V_{M}}{V_{0}} \right]$

----- (2)

----- (3)

Where N, E⁰, V⁰ and V_L have same significance as in equation (1), V_M is the volume of KOH added in the metal ions titration to attain the given pH reading and T_M total concentration of metal present in solution. log K₁ and logK₂ were calculated from the formation curve by the known value of pL at which $(\bar{n}) = 0.5$ and $(\bar{n}) = 1.5$ corresponding to the values of logK₁ and logK₂, respectively [8].

Sr.	Alc.+water

(i)- The \overline{n}_A and pH values of Ligand 3, 4, 5 TBT in Alc. +

Table water and Alcohol

рН		$\overline{n}_{\mathrm{A}}$		
1	4.4	1.1036759		
2	4.65	1.2245861		
3	4.9	1.2849832		
4	5.15	1.2892318		
5	5.4	1.3151079		
6	5.65	1.3366637		
7	5.9	1.3452685		
8	6.15	1.3538861		
9	6.4	1.3624885		
10	6.65	1.3667892		
11	6.9	1.3754045		
12	7.15	1.3840038		
13	7.4	1.3926174		
14	7.65	1.4141733		
15	7.9	1.4141237		
16	8.15	1.427048		
17	8.4	1.4399712		
18	8.65	1.4442492		
19	8.9	1.4398834		
20	9.15	1.4398132		
21	9.4	1.4397605		
22	9.65	1.435397		
23	9.9	1.4267071		
24	10.15	1.4309657		
25	10.4	1.4351711		
26	10.65	1.4350497		
27	10.9	1.5038679		
28	11.15	1.42601		
29	11.4	1.3264787		
30	11.65	1.2229545		
31	11.9	1.1453509		
	Y.			

		A 1 1 1
Sr. No.		Alcohol
	рН	nA
1	4.4	1.0345531
2	4.65	0.9741069
3	4.9	1.0258993
4	5.15	1.0345269
5	5.4	1.0345186
6	5.65	1.0301989
7	5.9	1.0172531
8	6.15	1.0172517
9	6.4	1.0172503
10	6.65	1.0215621
11	6.9	1.0215603
12	7.15	1.0215586
13	7.4	1.0258693
14	7.65	1.0258672
15	7.9	1.0258652
16	8.15	1.0258641
17	8.4	1.0301724
18	8.65	1.0344814
19	8.9	1.0344786
20	9.15	1.0344759
21	9.4	1.0344731
22	9.65	1.0301604
23	9.9	1.0344676
24	10.15	1.0258466
25	10.4	1.0215371
26	10.65	1.0387637
27	10.9	1.0645985
28	11.15	1.0861175
29	11.4	1.0860866
30	11.65	1.141992
31	11.9	1.1590954
32	12.15	1.4037223

Table- (ii)- The \overline{n}_A and pH values of Ligand 3,4,5 TBT in HTAB, SDS and TX-100 medium

			and the second se					
Sr.		НТАВ	Sr.		SDS	Sr.		TX-100
No.	pН	$\overline{n}_{\mathrm{A}}$	No.	pH	$\overline{n}_{\rm A}$	No.	pН	$\overline{n}_{\mathrm{A}}$
1	4.4	1.159808	1	4.4	1.1425543	1	4.15	1.1079568
2	4.65	1.1856412	2	4.65	1.1381958	2	4.4	1.0820013
3	4.9	1.1726481	3	4.9	1.1122526	3	4.65	1.0776637
4	5.15	1.1596676	4	5.15	1.0820013	4	4.9	1.0690151
5	5.4	1.1466922	5	5.4	1.0301953	5	5.15	1.0819456
6	5.65	1.2113672	6	5.65	1.0215655	6	5.4	1.0819391
7	5.9	1.1250749	7	5.9	1.017251	7	5.65	1.0819325
8	6.15	1.1250649	8	6.15	1.0258765	8	5.9	1.0776141
9	6.4	1.1293723	9	6.4	1.0215621	9	6.15	1.0819227
10	6.65	1.133674	10	6.65	1.0301869	10	6.4	1.0819162
11	6.9	1.1379806	11	6.9	1.0258724	11	6.65	1.0819096
12	7.15	1.1422868	12	7.15	1.0301845	12	6.9	1.0862172
13	7.4	1.1336474	13	7.4	1.0301821	13	7.15	1.0775862
14	7.65	1.1422641	14	7.65	1.0344938	14	7.4	1.07758
15	7.9	1.1422527	15	7.9	1.0344924	15	7.65	1.0818867

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	8.15	1.1465576	16	8.15	1.034491	16	7.9	1.0818802
18 8.65 1.1422244 18 8.65 1.0431086 18 8.4 1.0991063 19 8.9 1.142213 19 8.9 1.0560412 19 8.65 1.0990944 20 9.15 1.1378925 20 9.15 1.0603496 20 8.9 1.1077027 21 9.4 1.1335674 21 9.4 1.0689683 21 9.15 1.1163143 22 9.65 1.1335567 22 9.65 1.0775831 22 9.4 1.1206126 23 9.9 1.1507778 23 9.9 1.0862035 23 9.65 1.137832 24 10.15 1.1593683 24 10.15 1.0818867 24 9.9 1.150487 25 10.4 1.1938263 25 10.4 1.1163654 25 10.15 1.167956 26 10.65 1.2325637 26 10.65 1.151105 26 10.4 1.2454545 <td>17</td> <td>8.4</td> <td>1.1422357</td> <td>17</td> <td>8.4</td> <td>1.0431121</td> <td>17</td> <td>8.15</td> <td>1.090492</td>	17	8.4	1.1422357	17	8.4	1.0431121	17	8.15	1.090492
198.91.142213198.91.0560412198.651.0990944209.151.1378925209.151.0603496208.91.1077027219.41.1335674219.41.0689683219.151.1163143229.651.1335567229.651.0775831229.41.1206126239.91.1507778239.91.0862035239.651.1378322410.151.15936832410.151.0818867249.91.1504872510.41.19382632510.41.11636542510.151.1679562610.651.23256372610.651.15511052610.41.2454545	18	8.65	1.1422244	18	8.65	1.0431086	18	8.4	1.0991063
209.151.1378925209.151.0603496208.91.1077027219.41.1335674219.41.0689683219.151.1163143229.651.1335567229.651.0775831229.41.1206126239.91.1507778239.91.0862035239.651.1378322410.151.15936832410.151.0818867249.91.1504872510.41.19382632510.41.11636542510.151.1679562610.651.23256372610.651.15511052610.41.2454545	19	8.9	1.142213	19	8.9	1.0560412	19	8.65	1.0990944
219.41.1335674219.41.0689683219.151.1163143229.651.1335567229.651.0775831229.41.1206126239.91.1507778239.91.0862035239.651.1378322410.151.15936832410.151.0818867249.91.1504872510.41.19382632510.41.11636542510.151.1679562610.651.23256372610.651.1511052610.41.2454545	20	9.15	1.1378925	20	9.15	1.0603496	20	8.9	1.1077027
22 9.65 1.1335567 22 9.65 1.0775831 22 9.4 1.1206126 23 9.9 1.1507778 23 9.9 1.0862035 23 9.65 1.137832 24 10.15 1.1593683 24 10.15 1.0818867 24 9.9 1.150487 25 10.4 1.1938263 25 10.4 1.1163654 25 10.15 1.167956 26 10.65 1.2325637 26 10.65 1.1551105 26 10.4 1.2454545	21	9.4	1.1335674	21	9.4	1.0689683	21	9.15	1.1163143
23 9.9 1.1507778 23 9.9 1.0862035 23 9.65 1.137832 24 10.15 1.1593683 24 10.15 1.0818867 24 9.9 1.1550487 25 10.4 1.1938263 25 10.4 1.1163654 25 10.15 1.167956 26 10.65 1.2325637 26 10.65 1.1551105 26 10.4 1.2454545	22	9.65	1.1335567	22	9.65	1.0775831	22	9.4	1.1206126
24 10.15 1.1593683 24 10.15 1.0818867 24 9.9 1.1550487 25 10.4 1.1938263 25 10.4 1.1163654 25 10.15 1.167956 26 10.65 1.2325637 26 10.65 1.1551105 26 10.4 1.2454545	23	9.9	1.1507778	23	9.9	1.0862035	23	9.65	1.137832
25 10.4 1.1938263 25 10.4 1.1163654 25 10.15 1.167956 26 10.65 1.2325637 26 10.65 1.1551105 26 10.4 1.2454545	24	10.15	1.1593683	24	10.15	1.0818867	24	9.9	1.1550487
26 10.65 1.2325637 26 10.65 1.1551105 26 10.4 1.2454545	25	10.4	1.1938263	25	10.4	1.1163654	25	10.15	1.167956
	26	10.65	1.2325637	26	10.65	1.1551105	26	10.4	1.2454545
27 10.9 1.2670069 27 10.9 1.1808973 27 10.65 1.3098996	27	10.9	1.2670069	27	10.9	1.1808973	27	10.65	1.3098996
28 11.15 1.3229279 28 11.15 1.3014114	28	11.15	1.3229279	28	11.15	1.3014114			
29 11.4 1.4003986 29 11.4 1.3357379	29	11.4	1.4003986	29	11.4	1.3357379			
30 11.65 1.4389194				30	11.65	1.4389194			

Table (iii)-The \overline{n} And pL values of Ligand3, 4, 5-TBT with Mn (II) in Alc.+water

Table (iv)The	e \overline{n} And	pL values of Ligand
3, 4, 5-TB	T with Mr	n (II) in Alcohol

Sr. No.	pН	pL 🥖	\overline{n}
1	4.4	4.4714819	0.4148878
2	4.65	4.1204922	0.2186663
3	4.9	3.8370127	0.1478531
4	5.15	3.5775377	0.12724
5	5.4	3.3114051	0.0919037
6	5.65	3.0520976	0.0710399
7	5.9	2.8020287	0.0705798
8	6.15	2.557756	0.0828783
9	6.4	2.3105627	0.088683
10	6.65	2.0721946	0.1136576
11	6.9	1.8337364	0.1380392
12	7.15	1.5983014	0.1683457
13	7.4	1.3720011	0.2168675
14	7.65	1.1296444	0.2318579
15	7.9	0.8919481	0.2562422
16	8.15	0.662478	0.29623
17	8.4	0.4555157	0.3774338
18	8.65	0.3003816	0.5435239
19	8.9	0.1546823	0.7068416

Table (v)- - The \overline{n} And pL values of Ligand 3, 4, 5-TBT with Mn (II) in HTAB

			\overline{n}
Sr. No.	pН	pL	
1	4.4	4.366347	0.1713044
2	4.65	4.0742494	0.0801079
3	4.9	3.834904	0.1030605
4	5.15	3.6028839	0.1414051
5	5.4	3.3789245	0.1956522
6	5.65	3.1553325	0.2492664
7	5.9	2.9670305	0.3680119
8	6.15	2.7212102	0.3756522
9	6.4	2.5083356	0.4429359
10	6.65	2.2879156	0.4944707
11	6.9	2.0546769	0.5228923
12	7.15	1.8354179	0.5737453

Sr. No.	pН	pL	n
1	4.4	4.4028429	0.1502957
- 2	4.65	4.2939357	0.4253015
3	4.9	4.0798262	0.4880785
4	5.15	3.8771687	0.5673671
5	5.4	3.6021996	0.5255271
6	5.65	3.3485912	0.519271
7	5.9	3.0974669	0.5172942
8	6.15	2.8425246	0.508774
9	6.4	2.5876114	0.5002552
10	6.65	2.3364471	0.4981238
11	6.9	2.0815905	0.4896428
12	7.15	1.8267622	0.481163
13	7.4	1.5708431	0.4707164
14	7.65	1.3208912	0.4706798
15	7.9	1.066145	0.4622388
16	8.15	0.820964	0.4706249
17	8.4	0.555702	0.4435146
18	8.65	0.304731	0.4416496
19	8.9	0.0547811	0.4416156

Table (vi)---The \overline{n} And pL values of Ligand3, 4, 5-TBT with Mn (II) in SDS

Sr. No.	pН	pL	\overline{n}
1	4.4	4.3876955	0.1966042
2	4.65	4.1419383	0.2048904
3	4.9	3.9173649	0.2561909
4	5.15	3.687208	0.2951692
5	5.4	3.4622816	0.343349
6	5.65	3.2273282	0.3715403
7	5.9	2.9919797	0.398524
8	6.15	2.7540979	0.420397
9	6.4	2.5192506	0.4474672
10	6.65	2.2719462	0.452093
11	6.9	2.0325948	0.4707714
12	7.15	1.7959793	0.4939152

13	7.4	1.6166174	0.6236839	13	7.4
14	7.65	1.3879807	0.6566956	14	7.65
15	7.9	1.1579018	0.6868405	15	7.9
16	8.15	0.9316008	0.7218296	16	8.15
17	8.4	0.7150573	0.7697844	17	8.4
18	8.65	0.4978653	0.8150089	18	8.65

13	7.4	1.5509019	0.5022477
14	7.65	1.3095013	0.5168262
15	7.9	1.0794114	0.5501486
16	8.15	0.8497788	0.5834684
17	8.4	0.6174987	0.6116873
18	8.65	0.4047534	0.6694983

Table (vii)The	\overline{n}	And	pL values o	f Ligand 3,	4, 5-TB T	with Mn (II) in	TX-100
----------------	----------------	-----	-------------	-------------	------------------	-----------------	--------

Sr. No.	pН	pL	\overline{n}	
1	3.9	4.5548375	0.0934879	
2	4.15	4.3360027	0.1595063	
3	4.4	4.1018807	0.1921242	
4	4.65	3.8685887	0.2259312	
5	4.9	3.6214072	0.2311852	
6	5.15	3.3914367	0.2710247	
7	5.4	3.1619244	0.3108583	
8	5.65	2.9293617	0.344101	
9	5.9	2.6914242	0.3666128	
10	6.15	2.4587359	0.3984628	
11	6.4	2.226398	0.4303252	- <i>II</i>
12	6.65	1.9978832	0.4682495	
13	6.9	1.7779535	0.5199585	
14	7.15	1.5519796	0.5599362	
15	7.4	1.3351695	0.613429	KA N
16	7.65	1.1106982	0.6532138	
17	7.9	0.8626259	0.6559323	
18	8.15	0.624741	0.6742332	
19	8.4	0.3904634	0.6977048	
20	8.65	0.1795948	0.7544803	

Figures 1-5 show plots between \overline{n} And pL values of ligand 3, 4, 5-TBT with Mn (II) in Alc.+water, alcohol, HTAB, SDS and TX-100 medium respectively.

Biological study

Zone of inhibition has been shown (mm) in fig-6.

Fig- 6 Biological activity of thiosemicarbazone group containing, ligand and their Mn (II) complexes against *E coli., S.aureus, B.subtilis* in different medium

5. CONCLUSION

The values of log K are greater than zero, which exhibits the formation of metal ligand complexs by potentiometrically.

Maximum zone of inhibition is found for ligand in SDS micellar system against *B. subtilis*.

6. ACKNOWLEDGEMENTS

The author, Uma Rathore gratefully thanks the University Grant Commission (UGC) CRO Bhopal for awarding Minor Research Project (MRP) to carry out the research work at GCRC,Government Dungar College (A-Grade), Bikaner. The author also thanks BIFR, Bikaner for the evaluation of the biological activities of the compounds.

7. REFERENCES

[1] Jesic, L. S. V., Leovac V. M., Lalovic, M. M., Cesljevic, V. I., Divjakovic, V., 2011. Transition metal complexes with thiosemicarbazide-based ligands. Part 58. Synthesis, spectral and structural characterization of dioxovanadium (V) complexes with salicylaldehyde thiosemicarbazone. Journal of Serbian Chemical Society, 76 (6): 865–877.

[2] DeSousa, G..F., Deflon, V.M., Niquet, E., 2004. Diorganotin(IV) complexes with acetone N(4)-phenylthiosemicarbazone (Haptsc) as ligand. The crystallographic structures of [Sn(CH3)2(aptsc)X] (X ¼ Cl and Br) Journal of Molecular Structure. 687: 17–21.

[3] Casas, J.S., Garci-Tasend, M.S., Sordo, J., 2000. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coordination Chemistry Reviews, 209 (1): 197-261.

[4] Lobana, T. S., Sanchez, A., Casas, J. S., 1997. Synthesis, characterization, and in vitro cytotoxic activities of benzaldehyde thiosemicarbazone derivatives and their palladium (II) and platinum (II) complexes against various human tumor cell lines. Journal of the Chemical Society, 22: 4289-4300.

[5] Irving, H. M., Rosstti, H. S., 1954. The calculation of formation curves in mixed solvents. Journal of Chemical Society, 2904-2910.

[6] Mohammadzadeh, T., Sadjjadi, S. M., Habibi, P., Sarkari, B., 2012. Comparison of agar dilution, broth dilution, cylinder plate and disk diffusion methods for evaluation of anti-leishmanial drugs on *leishmania* promastigotes. Iranian Journal of Parasitology, 7(3): 43–47.

[7] Pund, D. A., Bhagwatkar, R. A., Tavade, D. T., Rathod, D. B., 2010. Studies on interaction between La (ii), and Nd (iii) metal ions and 1-(4-Hydroxy-6-methyl pyrimidino)-3-substituted thicarbamide at 0.1 m ionic strength pH metrically. Rasayan Journal of Chemistry, 2: 246-249.

[8]. D. M. Janrao Pathan, D. D. Kayande, J. J. Mulla, 2014. An over view of potentiometric determination of stability constants of metal complexes. Scientific Reviews and Chemical Communication, 4: 11-24.