1. Introduction

Transportation problem is found globally in solving certain real world problems. A transportation problem plays a essential role in production industry and many other purposes. The transportation problem is a special case of Linear programming problem, which permit us to regulate the optimum shipping patterns between origins and destinations. The solution of the problem will give strength us to determine the number of things to be transported from a particular origin to a particular destination so that the price obtained is minimum or the time consumption is minimum or the profit obtained is maximum. Let a_i be the number of units of a product available at origin i and b_j be the number of units of the product required at destination j. Let C_{ij} be the cost of transporting one unit from origin i to destination j and let x_{ij} be the amount of quantity carried or moved from origin i to destination j. A fuzzy transportation problem is a transportation problem in which the transportation expenditures, supply and demand quantities are fuzzy quantities. Ranking fuzzy number is a done in many mathematical models. The concepts of fuzzy sets were first introduced by Zadeh [12]. Since its inception several ranking procedure have been elaborated. Eventually many authors presented various approaches for solving the FTP problems [1],[2],[4]. Few of these ranking approaches have been reviewed and compared by Bortolan and Degani [3]. Presently Chen and H Wang [5] reviewed the existing method for ranking fuzzy numbers and each approach has demerits in some aspects such as indiscrimination and finding not so easy to understand. As of now none of them is completely accepted.

Ranking normal fuzzy number was first launched by Jain [6] for decision making in fuzzy situations. Chan stated that in many situations it is impossible to restrict the membership function to the general form and introduced the concept of generalized fuzzy numbers. Since then extraordinary phenomenal efforts are made on the development of numerous methodologies. The development in ordering fuzzy numbers can even be found in [7],[8],[9],[10],[11].Fuzzy numbers must be ranked before a decision is taken by a decision maker.

In this paper a new method is proposed for the ranking of generalized fuzzy trapezoidal numbers. To illustrate this proposed method, an instance is discussed. As the proposed Distance ranking method is very direct and simple it is very easy to understand and using which it is simple to find the fuzzy optimal solution of fuzzy transportation problems occurring in the real life situations.

This paper is organized as follows: Section 2 includes the basic definition of fuzzy numbers. In section 3, a new Distance ranking procedure is introduced. In section 4, MODI method is adopted to solve Fuzzy transportation problems. To demonstrate the proposed method a numerical example is solved. Finally the paper ends with a conclusion.

2. Preliminaries

In this section we define some basic definitions which will be used in this paper by Yahya [14].

2.1 Definition

A fuzzy number A in R is said to be a triangular fuzzy number if its membership function $\mu_A : R \rightarrow [0,1]$ has the following characteristics.

$$\mu_A(x) = \begin{cases}
\frac{x - a_1}{a_2 - a_1}, & a_1 \leq x \leq a_2 \\
1, & x = a_2 \\
\frac{a_3 - x}{a_3 - a_2}, & a_2 \leq x \leq a_3 \\
0, & \text{otherwise}
\end{cases}$$
It is denoted by $A = (a^{(1)}, a^{(2)}, a^{(3)})$ where $a^{(1)}$ is Core (A), $a^{(2)}$ is left width and $a^{(3)}$ is right width. The geometric representation of Triangular Fuzzy number is shown in figure. Since, the shape of the triangular fuzzy number A is usually in triangle it is called so.

2.2 Membership function of triangular fuzzy number

The Parametric form of a triangular fuzzy number is represented by $A = \left[a^{(1)} - a^{(2)}(1-r), a^{(1)} + a^{(3)}(1-r) \right]$.

3. Main Results

3.1 Ranking of Triangular Fuzzy number with distance method

Let all of fuzzy numbers be either positive or negative. Without less of generality, Assume that all of them are positive. The membership function of $a \in R$ is $u_0(x) = 1$ if $x = a$; and $u_0(x) = 0$, if $x \neq a$. Hence if $a = 0$ we have the following

$$u_0(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$$

Since $u_0(x) \in E$, left fuzziness σ and right fuzziness β are 0, so for each $u_0(x) \in E$

$$d_2(u, u_0) = \int_0^1 u(r)^2 \, dr + \int_0^1 u'(r)^2 \, dr + \frac{1}{2}$$

Thus we have the following definition.

Definition 3.1 For u and $v \in E$, define the ranking of u and v by saying

- $d(u, u_0) > d(v, u_0)$ if and only if $u > v$
- $d(u, u_0) < d(v, u_0)$ if and only if $u < v$
- $d(u, u_0) = d(v, u_0)$ if and only if $u \approx u$.

Property 3.1 Suppose u and $v \in E$ are arbitrary then:

1. If $u = v \text{ then } u \approx v$
2. If $v \subseteq u$ and $-u(r)^2 + u(r)^2 > v(r)^2 + v(r)^2$ for all $r \in [0, 1]$ then $v < u$.

Remark 3.1 the distance triangular fuzzy number $u = (x_0, \sigma, \beta)$ of u_0 is defined as following

$$d(u, u_0) = \left[2x_0^2 + \sigma^2 / 3 + \beta^2 / 3 + x_0 \left(\beta - \sigma \right) \right]^{1/2}$$

Remark 3.2 the distance trapezoidal fuzzy number $u = (x_0, y_0, \sigma, \beta)$ of u_0 is defined as following

$$d(u, u_0) = \left[x_0^2 + y_0^2 + \sigma^2 / 3 + \beta^2 / 3 - x_0 \sigma + y_0 \beta \right]^{1/2}$$

Remark 3.3 if $u \approx v$, it is not necessary that $u = v$. Since if $u \neq v$ and

$$\left(u(r)^2 + v(r)^2 \right)^{1/2} = \left(v(r)^2 + v(r)^2 \right)^{1/2} \text{ then } u \approx v.$$

4. Numerical Example

We shall present a solution to fuzzy transportation problem involving shipping cost, customer demand and availability of products using trapezoidal Fuzzy numbers. Consider the following transportation problem by Malini [13]
6. Conclusions

Ranking fuzzy numbers is an enormous task in a fuzzy decision making process. Each ranking method represents a different point of view on fuzzy numbers. This work formulated a new ranking method which is simple and efficient. As mentioned by Wang and Kerre, it is a tough task to decide whether on which fuzzy ranking method is the best. Most of the time choosing a method rather than another is a matter of preference. The result obtained in this paper gives us the optimum cost for the fuzzy transportation problems.

6. References

