Biosystematic studies on Nematoda *Spinitectus garuai* sp.nov. from *Clupisoma garuai* (Hamilton)

Dr.Sadhana Gupta
Assistant Professor
Indira Gandhi Govt. P.G. College, Bangarmau, Unnao, U.P.
Contact No. 9807414555

Dr. Sadhana Gupta is M.Sc. (Gold Medal) in Zoology from Lucknow University. She worked as J.R.F. in an All India coordinated project on Taxonomy (AICOPTAX) sponsored by Ministry of Environment and Forest, Govt. of India under supervision of Dr. (Smt.) Vinod Gupta, Professor, Lucknow University. Later she obtained her Ph.D. degree with area of specialization in Parasitology. Presently she is working as Assistant Professor of Zoology at Indira Gandhi Govt. P.G. College, Bangarmau, Unnao, Uttar Pradesh, India.

ABSTRACT: The genetic diversity among the fascinating biota is the result of several thousand years of tough competition within an individual among species, with other organism and several biotic and abiotic environmental factors during the process of evolution. One of the new species has been added in this series described and figured from the small intestine of *Clupisoma garuai* (Hamilton). After going through the literature the present form comes closer to known valid sp. of the genus *Spinitectus* in having all the essential morphological characters as body medium, having annulations, annula bearing spines, oesophagus divided into parts muscular anterior and glandular posterior one, thin cuticle. Males are smaller than females, spicules unequal, tail curved in male, two ovaries situated at one anterior and other posterior one, tail pointed in females but differs due to three longitudinal cuticular ridges present at the posterior part of the body and well developed lateral alae in both the sexes, no. of caudal papillae 10 pairs, 6 pairs preanal, 1 pair adanal and 3 pairs postanal, spicule ratio 1:2.16 instead of 1:2.7.

Key Words: *Spinitectus*, Nematoda, Biosystematics

INTRODUCTION: Long and slender worms. Mouth with indistinct lips. Cuticle provided with a series of transverse rings, to the posterior edge of which are attached backwardly directed spines, diminishing in size and numbers posteriorly. Vestibule funnel shaped. Oesophagus divided into two parts, anterior muscular small and posterior glandular part long. Tail of male spirally coiled with well developed caudal alae and lateral alae, but not uniformly developed. In females also uniformly developed lateral alae present and tail with spine.

MATERIALS AND METHODS: Fishes procured for the present investigation were mostly collected from fishing sites caught by nets. Fishes were examined for parasitic infection. The recovered nematodes washed in physiological saline and then fixed in hot 4% formaldehyde solution. For light microscopical examination, the nematodes were cleared with glycerine. Drawings were made with the aid of camera lucida. All the measurements are in millimetres. The specimen has been deposited to co-ordinator of All India Project on Taxonomy (AICOPTAX) sponsored by Ministry of Environment and Forest, Govt. of India, New Delhi.

Male: Body 6.21-6.45 long, 0.17-0.18 wide. Spiny annulations 120 in male of which 39 are conspicuous. Number of spines 10-12 in first and second rows. First ring of spines 0.13 from anterior end in male. First two rings are set close, distance between first and second ring 0.4, second and third ring 0.045, third and fourth ring 0.05, fourth and fifth ring 0.055, fifth and sixth ring 0.055, sixth and seventh ring 0.06, seventh and eighth ring 0.06, eighth and ninth ring 0.065, ninth and tenth ring 0.07. After thirteen rings distance between the ring is 0.07-0.08. After 13 rings distance between the ring decreases and become equidistant upto 15-30 rings, after 30 rings the distance decreases up to the posterior end of body. Cephalic papillae 3 pairs, two submedian and one lateral. Vestibule funnel shaped 0.03 long. Muscular oesophagus divided into two parts anterior muscular 0.25-0.29 long, 0.03 wide. Posterior glandular 1.11-1.15 long, 0.06 wide. Entire oesophagus 1.36-1.43 long. Nerve ring 0.18-0.20 from anterior end. Excretory pore not visible. Tail 0.12-0.15 long with well developed caudal alae and feebly developed spines. Spicules dissimilar, unequal, left 0.26-0.31 long, right 0.12-0.15 long, spicule ratio (right: left) 1:2.16, caudal papillae 10 pairs, 6 pairs preanal, 1 pair adanal and 3 pairs postanal, all are pedunculated except the posterior sessile postanal pair. Three longitudinal cuticular ridges are present at the posterior part of the body.

Female: Body 10.33-15.81 long, 0.30-0.38 wide, vestibule 0.03-0.04 long. Distance between the first two rings 0.04-0.05, second and third 0.05-0.06, fourth and fifth 0.05-0.06, fourth and fifth 0.055-0.06, fifth and sixth 0.06-0.065, sixth and seventh 0.06-0.065, seventh and eighth 0.065-0.07, eighth and ninth 0.07-0.08, ninth and tenth 0.08-0.09. Total spiny annulations 215-276 of which 65-90 are conspicuous. Number of spines in first and second row is 13-15, third and fifth ring have 15, fourth, sixth, seventh, eighth, ninth, tenth to fifteen rings have 16 spines. The number of spines are not measurements are after fifteenth ring. Anterior muscular oesophagus 0.35-0.51 long, 0.04 wide. Posterior glandular oesophagus 1.19-1.98 long, 0.1 wide. Entire oesophagus 1.54-2.49 long. Nerve ring 0.26 from anterior end. Vulva prequatorial, 4.22-7.31 from anterior end, uteri opposed. Tail 0.18-0.26 long, conical, ending in a pointed spine. Eggs embryonated 0.03-0.04x0.025-0.03.

<table>
<thead>
<tr>
<th>Host</th>
<th>Clupisoma garuai (Hamilton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Small intestine</td>
</tr>
<tr>
<td>Locality</td>
<td>Lucknow</td>
</tr>
<tr>
<td>Prevalence</td>
<td>5 male and 5 female specimens from 3 hosts out of 105 examined.</td>
</tr>
</tbody>
</table>
Discussion and Results: Fourment (1883) erected the genus Spinitectus with Spinitectus oviflagelli as its type species from Merlangus vulgaris. Sahay and Prasad (1964) created the species Spinitectus komiyai for their specimen from Eutropiichthys vacha. Agarwal (1965) described Spinitectus pseudotropii from Clupisoma (=Pseudotropius) garua. Sood (1968) considered Spinitectus pseudotropii to be synonym of Spinitectus komiyai Sahay and Prasad (1964). Rai (1969) added another new species S. pandei. From two fishes viz Eutropiichthys vacha and Clupisoma garua, separating it from Spinitectus pseudotropii namely on the basis of the structure of caudal papillae which however is considered as intraspecific variation.

Moravec (1996) described S. inermis from Anguilla Anguilla on the basis of configuration of the pseudolabia and the presence of sublabial. Choudhary and Perryman (2003) added another species Spinitectus macrospinosis n.sp. based on spines length. S. petrowi Belnis (1965) and S. gigi Fujita(1927) redescribed by Moravec and Wang(2004) and reported peg like cuticular spine on ventral side of the tail and preanal region in female in S. petrowi and first two rings of spines located close to each other relatively long distances between the 2nd-7th rings and the body spination extending posteriorly to the tail in females in S. gigi. S. osoroi Choudhury and Perez-Ponce de Leon (2001) redescribed by Moravec, Maldonado and Mandujano (2010) found out certain characteristic features different from original i.e. terminal mucron with numerous pointed processes on female tail. Brure and Nanware (2013) created another species Spinitectus indica for their specimen from Mastacembelus armatus on the basis of 9 pairs caudal papillae and vulval opening in front of anus. Another species S. darwini added by Nawab , Tikam , Chauhan and Khare having 280 spiny annulations (12-24) in each annulations. S. gabata Ponier, Weistein Garcia-Vedrenine and Kuris(2014) created with a characteristic feature of bifurcation of the long , left spicle and short right spicule serving as gubernaculums.

The present sp. differs from all the known sp. of the genus in having 3 long cuticular ridges in males and has close resemblance with S. osoroi in having well developed caudal and lateral alae in male and preequatorial vulva but differs from it in having well developed lateral alae in both the sexes, number of caudal papillae 10 pairs instead of 9 pairs, spicule ratio 1:2.16 instead of 1:3.8 and female tail ending with pointed spine like structure instead of terminal cuticular spine with numerous pointed processes on female tail.

It is evident from the present study that author’s specimen exhibit certain morphological features in which it differs considerably from the majority of its conspecific. Present species is named after the specific name of the host.

Acknowledgement: Author is thankful to Ministry of Environment and Forest for providing Financial assistance and supervisor Prof. Vinod Gupta for guidance and support to complete the research work.
References: