Product cordial labeling of one point union graphs related to shell graphs

Mukund V. Bapat
Abstract. We discuss one point union graphs of shell S_{4} related graphs. We discuss $S_{4}{ }^{(k)}, F l\left(S_{4}\right)^{(k)}$ etc for Product cordial labeling.
Key words: labeling, cordial, product, wheel, crown. tail graph. Subject Classification: 05C78

2. Introduction: The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [8], A dynamic survey of graph labeling by J.Gallian [7] and Douglas West.[8]. I.Cahit introduced the concept of cordial labeling [6].There are variety of cordial labeling available in labeling of graphs. Sundaram, Ponraj, and Somasundaram [9] introduced the notion of product cordial labeling. A product cordial labeling of a graph G with vertex set V is a function f from V to $\{0,1\}$ such that if each edge uv is assigned the label $f(u) f(v)$, the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 , and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph with a product cordial labeling is called a product cordial graph. We use $\mathrm{v}_{\mathrm{f}}(0,1)=(a, b)$ to denote the number of vertices with label 1 are a in number and the number of vertices with label 0 are b in number. Similar notion on edges follows for $\mathrm{e}_{\mathrm{f}}(0,1)=(\mathrm{x}, \mathrm{y})$.
A lot of work is done in this type of labeling so far. One interested in survey may refer Dynamic survey in Graph labeling by J. Gallian.We mention a very short part of it. Sundaram, Ponraj, and Somasundaram have shown that trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; PmUPn; CmUPn; PmUK1,n; WmUFn (Fn is the fan Pn+K1); K1,mUK1,n; WmU K1,n; Wm UPn; Wm UCn; the total graph of P_{n} (the total graph of P_{n} has vertex set $V(\mathrm{Pn}) \cup E(\mathrm{Pn})$ with two vertices adjacent whenever they are neighbors in Pn); Cn if and only if n is odd; $C_{n}{ }^{(t)}$, the one-point union of t copies of C_{n}, provided t is even or both t and n are even; $K 2+m K 1$ if and only if m is odd; $C_{m} \cup P_{n}$ if and only if
 They also prove that $\mathrm{K}_{\mathrm{m}, \mathrm{n}}(\mathrm{m}, \mathrm{n}>2), \mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}(\mathrm{m}, \mathrm{n}>2)$ and wheels are not product cordial and if a (p, q)-graph is product cordial graph, then q 6 $(p-1)(p+1) / 4+1$. In this paper We show that one point union of $G=F L\left(C_{3}\right)$, , bull of C_{3}, crown of C_{3}, double crown of $C_{3}, C_{3}{ }^{++}$, tail $\left(C_{3}, 2 P_{2}\right)$, C_{3} attached with 2 pendent edges attached at adjacent vertices and show them to be Product cordial under certain conditions.

3. Preliminaries:

3.1 Fusion of vertex. Let G be a (p, q) graph. Let $u \neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has $p-1$ vertices and at least $q-1$ edges. If $u \in G_{1}$ and $v \in G_{2}$, where G_{1} is $\left(p_{1}, q_{1}\right)$ and G_{2} is $\left(p_{2}, q_{2}\right)$ graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has $p_{1}+p_{2}-1$ vertices and $q_{1}+q_{2}$ edges. Sometimes this is referred as " u is identified with ..".The concept is well elaborated in John Clark and D. Holton [6]
3.2 Crown graph. It is $\quad C_{n} \square K_{2}$. At each vertex of cycle a n edge was attached. We develop the concept further to obtain crown for any graph. Thus crown (G) is a graph $G \square K_{2}$.It has a pendent edge attached to each of it's vertex. If G is a (p, q) graph then crown (G) has $q+p$ edges and $2 p$ vertices. $\quad 3.3$ Flag of a graph G denoted by $F L(G)$ is obtained by taking a graph $G=G(p, q)$.At suitable vertex of G attach a pendent edge. It has $p+1$ vertices and $q+1$ edges.
$3.4 \quad G^{(K)}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If G is a (p, q) graph then $\mid V\left(G_{(k)} \mid=k(p-1)+1\right.$ and $|E(G)|=k . q$ 3.5 A bull graph bull (G) was initially defined for a C_{3}-bull.It has a copy of G with an pendent edge each fused with any two adjacent vertices of G. For G is a (p, q) graph, bull (G) has $p+2$ vertices and $q+2$ edges.
3.6 A tail graph (also called as antenna graph) is obtained by fusing a path p_{k} to some vertex of G. This is denoted by $\operatorname{tail}\left(G, P_{k}\right)$. If there are t number of tails of equal length say $(k-1)$ then it is denoted by tail($G, \mathrm{tp}_{\mathrm{k}}$). If G is a (p, q) graph and a tail P_{k} is attached to it then $\operatorname{tail}\left(G, P_{k}\right)$ has $p+k-1$ vertices and $q+k-1$ edges.
4. Main Results:

Theorem 4.1 Let $G=S_{4}{ }^{(K)}$. Then G is product cordial iff k is an even number.
Proof: We define $i^{\text {th }}$ copy of S_{4} in G as : the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right)$, the chord $\left(u_{i, 1} u_{i, 3}\right) ; i=1,2$, ..k.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows:
Case $\mathrm{k}=2 \mathrm{x}$, an even number.
The vertex common to all copies of S_{4} is say $u_{i, 1}$.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for all $\mathrm{i}=1,2, . . \mathrm{x}$, and all $\mathrm{j}=1,2,3,4$.
$f\left(u_{i, j}\right)=0$ for all $\mathrm{i}=\mathrm{x}+1, . .2 \mathrm{x}$, and all $\mathrm{j}=2,3,4$.

The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(3 \mathrm{x}, 3 \mathrm{x}+1) ; \mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 5 \mathrm{x})$. If we change the common point on G the same function f works as product cordial labeling. The only one thing is required is that the vertex common to all copies of S_{4} is labeled as ' 1 '.

Case K is an odd number say $2 \mathrm{x}+1$.
We need $\mathrm{v}_{\mathrm{f}}(0)=\mathrm{v}_{\mathrm{f}}(1)$.This produces $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)+2$ at least. Therefore the condition $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ is not satisfied. The graph is not product cordial.
Theorem 4.2 Let $G^{\prime}=F L\left(S_{4}\right)$ then $G=G^{\prime(k)}$ is product cordial for all k if one point union is taken at any vertex other than pendent vertex. If the common vertex is taken at pendent vertex then G is product cordial iff k is even.

Proof: We define $i^{\text {th }}$ copy of $\mathrm{FL}\left(\mathrm{S}_{4}\right)$ in G as : the cycle C_{4} of S_{4} as $\left(\mathrm{u}_{\mathrm{i}, 1}, \mathrm{c}_{\mathrm{i}, 1}, \mathrm{u}_{\mathrm{i}, 2}, \mathrm{c}_{\mathrm{i}, 2}, \mathrm{u}_{\mathrm{i}, 3}, \mathrm{c}_{\mathrm{i}, 3}, \mathrm{u}_{\mathrm{i}, 4}, \mathrm{c}_{\mathrm{i}, 4}, \mathrm{u}_{\mathrm{i}, 1}\right)$; the chord $\left(\mathrm{u}_{\mathrm{i}, 1} \mathrm{u}_{\mathrm{i}, 3}\right)$; $\mathrm{i}=1,2$,..k. and the pendent vertex $u_{i, 5}$ with corresponding pendent edge $\left(u_{i, 1} u_{i, 5}\right)$.Thus G has $4 k+1$ vertices and $6 k$ edges. In structure 1 we take vertex common to all copies as $u_{i, 1}$, the degree three vertex on S_{4}. In structure 2 we take vertex common to all copies as $u_{i, 2}$, the degree two vertex on S_{4}.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows: (The one point union of $\mathrm{FL}\left(\mathrm{S}_{4}\right)$ is taken at vertex S4.
Case $\mathrm{k}=2 \mathrm{x}$, an even number.
Let the common point to all copies of $\mathrm{FL}\left(\mathrm{S}_{4}\right)$ be $\mathrm{u}_{\mathrm{i}, 1}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for all $\mathrm{i}=1,2, . . \mathrm{x}$, and all $\mathrm{j}=1,2,3,4,5$.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=0$ for all $\mathrm{i}=\mathrm{x}+1, . .2 \mathrm{x}$, and all $\mathrm{j}=2,3,4,5$.
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(4 \mathrm{x}, 4 \mathrm{x}+1)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(6 \mathrm{x}, 6 \mathrm{x})$.
If we change the common point on G the same function f works as product cordial labeling. The only one thing is required is that the vertex common to all copies of $\mathrm{FL}\left(\mathrm{S}_{4}\right)$ is labeled as ' 1 '.
Case $k=2 x+1$. Let the common point to all copies of S_{4} be $u_{i, 1}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for all $\mathrm{i}=1,2, \ldots \mathrm{x}$, and all $\mathrm{j}=1,2,3,4,5$.
$f\left(u_{i, j}\right)=0$ for all $i=x+1, . .2 x$, and all $j=2,3,4,5$.
$f\left(u_{i, j}\right)=1$ for $\mathrm{i}=2 \mathrm{x}+1$, and all $\mathrm{j}=1,2,3$;
$f\left(u_{i, j}\right)=1$ for $i=2 x+1$, and all $j=4,5$.
The label number distribution is $v_{f}(0,1)=(4 x+2,4 x+3) ; e_{f}(0,1)=(6 x+3,6 x+3)$.If we change the common point on G the same function f works as product cordial labeling. The only one thing is required is that the vertex common to all copies of $\mathrm{FL}\left(\mathrm{S}_{4}\right)$ be labeled as 1 . (in all above cases it was $u_{i, 1}$)
If the one point union of $\mathrm{FL}\left(\mathrm{S}_{4}\right)$ is taken at pendent vertex of $\mathrm{FL}\left(\mathrm{S}_{4}\right)$ then for $\mathrm{k}=2 \mathrm{x}$ only the G is product cordial graph. The same function as above will work with condition that
the vertex common to all copies of $\mathrm{FL}\left(\mathrm{S}_{4}\right)$ be labeled as 1 . When $\mathrm{k}=2 \mathrm{x}+1$ this graph is not product cordial.
Theorem 4.3 Let $G^{\prime}=\operatorname{Bull}\left(S_{4}\right)$. Then $G=G^{\prime(k)}$ is product cordial for all k when common vertex is a cycle C_{4} vertex and if the common point is a pendent vertex then for $\mathrm{k}=2 \mathrm{x}$ only.
Proof: We define $i^{\text {th }}$ copy of $\operatorname{Bull}\left(S_{4}\right)$ in G as : the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right)$; the chord $\left(u_{i, 1} u_{i, 3}\right)$, two pendent edges as $\left(u_{i, 1} u_{i, 5}\right),\left(u_{i, 2} u_{i, 6}\right)$ corresponding to pendent vertices $u_{i, 5}, u_{i, 6} ; i=1,2$,..k. Thus G has $5 k+1$ vertices and $7 k$ edges.

Case $\mathrm{k}=2 \mathrm{x}$, an even number.
Let the common point to all copies of bull $\left(\mathrm{S}_{4}\right)$ be $\mathrm{u}_{\mathrm{i}, 1}$
$f\left(u_{i, j}\right)=1$ for all $i=1,2, . . x$, and all $j=1,2, . ., 6$.
$f\left(u_{i, j}\right)=0$ for all $i=x+1, . .2 x$, and all $j=2,3, \ldots, 6$
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 5 \mathrm{x}+1) ; \mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x})$. If we change the common point on G to some other vertex on cycleC C_{4} of S_{4} (i.e the vertices $\left.u_{i, 2}, u_{i, 3}, u_{i, 4}\right)$ same function f works as product cordial labeling.

Case $\mathrm{k}=2 \mathrm{x}+1$, an odd number.
Let the common point to all copies of bull $\left(S_{4}\right)$ be $u_{i, 1}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for all $\mathrm{i}=1,2, \ldots \mathrm{x}$, and all $\mathrm{j}=1,2, . ., 6$.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=0$ for all $\mathrm{i}=\mathrm{x}+1, . .2 \mathrm{x}$, and all $\mathrm{j}=2,3, \ldots, 6$
$f\left(u_{i, j}\right)=1$ for all $\mathrm{i}=2 x+1$ and all $\mathrm{j}=1,2,3$.
$f\left(u_{i, j}\right)=0$ for all $i=x+1, . .2 x$, and all $j=4,5,6$.
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(4 \mathrm{x}+3,4 \mathrm{x}+3)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}+4,7 \mathrm{x}+3)$.
If we change the common point on G to some other vertex on cycle C_{4} of S_{4} (i.e the vertices $u_{i, 2}, u_{i, 3}, u_{i, 4}$) same function f works as product cordial labeling.

If the common vertex to all k copies of bull $\left(\mathrm{S}_{4}\right)$ in G is taken as a pendent vertex $\left(\mathrm{u}_{\mathrm{i}, 5}\right.$ or $\left.\mathrm{u}_{\mathrm{i}, 6}\right)$ then the same function as above gives us product cordial labeling for $\mathrm{k}=2 \mathrm{x}$ an even number. Also the label number distribution is same. But when $\mathrm{k}=2 \mathrm{x}+1$ the graph is not product cordial.

Theorem 4.4 The one point union of k copies of $\mathrm{S}_{4}{ }^{+}$i.e. $\mathrm{G}=\left(\mathrm{S}_{4}{ }^{+}\right)^{(\mathrm{k})}$ is product cordial.
Proof: We define $i^{\text {th }}$ copy of S_{4}^{+}in G as : the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right)$; the chord $\left(u_{i, 1} u_{i, 3}\right)$, four pendent edges as $\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}} \mathrm{u}_{\mathrm{i}, \mathrm{j}+4}\right) ; \mathrm{j}=1,2,3,4$. Corresponding to pendent vertices $\mathrm{u}_{\mathrm{i}, \mathrm{j}}, \mathrm{i}=1,2$,.. k and $\mathrm{j}=5,6,7,8$. Thus G has $7 \mathrm{k}+1$ vertices and 9 k edges.

Case $\mathrm{k}=2 \mathrm{x}$, an even number.
Let the common point to all copies of G be $\mathrm{u}_{\mathrm{i}, 1}$ (or any one on S_{4})
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for all $\mathrm{i}=1,2, . . \mathrm{x}$, and all $\mathrm{j}=1,2, \ldots, 8$.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=0$ for all $\mathrm{i}=\mathrm{x}+1, . .2 \mathrm{x}$, and all $\mathrm{j}=2,3, \ldots, 8$
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x}+1) ; \mathrm{e}_{\mathrm{f}}(0,1)=(9 \mathrm{x}, 9 \mathrm{x})$.
Case $\mathrm{k}=2 \mathrm{x}+1$, an even number.
Let the common point to all copies of G be $u_{i, 1}$
$f\left(u_{i, j}\right)=1$ for all $\mathrm{i}=1,2, . . \mathrm{x}$, and all $\mathrm{j}=1,2, . ., 8$.
$f\left(u_{i, j}\right)=0$ for all $i=x+1, . .2 x$, and all $j=2,3, \ldots, 8$.
$f\left(u_{i, j}\right)=1$ for all $i=1,2, . . x$, and all $j=1,2,3,5$
$f\left(u_{i, j}\right)=0$ for all $i=x+1, . .2 x$, and all $j=4,6,7,8$
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(7 \mathrm{x}+3,7 \mathrm{x}+4) ; \mathrm{e}_{\mathrm{f}}(0,1)=(9 \mathrm{x}+5,9 \mathrm{x}+4)$.
Let the common point be a pendent vertex say $u_{i, 5}$.
Labels up to first 2 x copies are same as above. Then labels on $(2 \mathrm{x}+1)^{\text {th }}$
copy of $\mathrm{S}_{4}{ }^{+}$are given by : $\quad \mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for all $\mathrm{i}=2 \mathrm{x}+1$, and all $\mathrm{j}=1,2,3,5$.

$$
f\left(u_{i, j}\right)=0 \text { for all } i=2 x+1, \text { and all } j=4,6,7,8
$$

The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(7 \mathrm{x}+3,7 \mathrm{x}+4) ; \mathrm{e}_{\mathrm{f}}(0,1)=(9 \mathrm{x}+5,9 \mathrm{x}+4)$.
Theorem 4.5 Let G^{\prime} be the graph obtained by fusing two pendent edges at any vertex of $S_{4} . G^{\prime}=\left(\operatorname{tail}\left(S_{4}, 2 P_{2}\right)\right.$. Then $G^{\prime,(k)}$ is product cordial for all k if the common vertex is any vertex which is not pendent vertex. If common vertex is pendent vertex then $\mathrm{k}=2 \mathrm{x}$ only.

Proof: We define $i^{\text {th }}$ copy of G^{\prime} in G as : the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right)$; the chord $\left(u_{i, 1} u_{i, 3}\right)$, two pendent edges as ($\left.u_{i, 1} u_{i, 5}\right)$, $\left(u_{i, 1} u_{i, 6}\right)$. Corresponding to pendent vertices $u_{i, j}, i=1,2$,..k and $j=5,6$. Thus G has $5 k+1$ vertices and $7 k$ edges. There are two structures. In structure 1 we take the common point as a point on S_{4} in G. In structure 2 we take pendent vertex as a common point on G.
Structure 1:
Case $\mathrm{k}=2 \mathrm{x}$, an even number.
$f\left(u_{i, j}\right)=1$ for all $i=1,2, . . x$, and all $j=1,2, . ., 6$.
$f\left(u_{i, j}\right)=0$ for all $i=x+1, . .2 x$, and all $j=2,3, \ldots, 6$.
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 5 \mathrm{x}+1)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x})$.
Case $\mathrm{k}=2 \mathrm{x}+1$, an odd number.
$f\left(u_{i, j}\right)=1$ for all $\mathrm{i}=1,2, \ldots \mathrm{x}$, and all $\mathrm{j}=1,2, \ldots, 6$.
$f\left(u_{i, j}\right)=0$ for all $i=x+1, . .2 x$, and all $j=2,3, \ldots, 6$.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for all $\mathrm{i}=2 \mathrm{x}+1$. and all $\mathrm{j}=1,2,3$.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=0$ for all $\mathrm{i}=2 \mathrm{x}+1$. and all $\mathrm{j}=4,5,6$.
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}+2,5 \mathrm{x}+3) ; \mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}+4,7 \mathrm{x}+3)$.

Structure 2:
Case $\mathrm{k}=2 \mathrm{x}$, an even number.
$f\left(u_{i, j}\right)=1$ for all $\mathrm{i}=1,2, . . \mathrm{x}$, and all $\mathrm{j}=1,2, . ., 6$.
$f\left(u_{i, j}\right)=0$ for all $i=x+1, . .2 x$, and all $j=2,3, \ldots, 6$.
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 5 \mathrm{x}+1) ; \mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x})$.
Case $\mathrm{k}=2 \mathrm{x}+1$, an odd number. Then there is no product cordial labeling.
Conclusions: In this paper we have obtained one point union graphs on S_{4}, and and the graphs obtained from S_{4} by fusing pendent edges (maximum two at a vertex) at vertices of S_{4}. We have studied these path unions for product cordiality. We have shown that:

1) $\quad \mathrm{S}_{4}{ }^{(\mathrm{K})}$ is product cordial iff k is an even number.

Let $G^{\prime}=F L\left(S_{4}\right)$ then $G=G^{\prime(k)}$ is product cordial for all k if one point union is taken at any vertex other than pendent vertex. If the common vertex is taken at pendent vertex then G is product cordial iff k is even.
3) Let $G^{\prime}=\operatorname{Bull}\left(\mathrm{S}_{4}\right)$. Then $\mathrm{G}=\mathrm{G}^{\text {,(k) }}$ is product cordial for all k when common vertex is a cycle C_{4} vertex and if the common point is a pendent vertex then for $k=2 x$ only. 4)The one point union of k copies of $\mathrm{S}_{4}{ }^{+}$i.e. $\mathrm{G}=\left(\mathrm{S}_{4}^{+}\right)^{(\mathrm{k})}$ is product cordial.
5) Let G^{\prime} be the graph obtained by fusing two pendent edges at any vertex of S_{4}. $G^{\prime}=\left(\operatorname{tail}\left(S_{4}, 2 P_{2}\right)\right.$. Then $G^{,(k)}$ is product cordial for all k if the common vertex is any vertex which is not pendent vertex. If common vertex is pendent vertex then $k=2 x$ only.It is necessary to study these types og graphs further.

References:

[1] Bapat M.V. Some new families of product cordial graphs, Proceedings, Annual International conference, CMCGS 2017, Singapore ,110-115
[2] Bapat M.V. Some vertex prime graphs and a new type of graph labelling Vol 47 part 1 yr 2017 pg 23-29 IJMTT
[3] Bapat M. V. Some complete graph related families of product cordial graphs. Arya bhatta journal of mathematics and informatics vol 9 issue 2 july-Dec 2018.
[4] Bapat M.V. Extended Edge Vertex Cordial Labelling Of Graph ", International Journal Of Math Archives IJMA Sept 2017 issue
[5] Bapat M.V. Ph.D. Thesis, University of Mumbai 2004.
[6] John Clark and D. Holton, A book " A first look at graph Theory", world scientific
[7] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.Harary, Theory, Narosa publishing, New Delhi
[8] J. Gallian Electronic Journal Of Graph Labeling (Dynamic survey)2016
[9] Harary, Graph Theory, Narosa publishing, New Delhi
[10] M. Sundaram, R. Ponraj, and S. Somasundaram, "Product cordial labeling of graph," Bulletin of Pure and Applied Science, vol. 23, pp. 155-163, 2004.
[11] Douglas West, Introduction to graph Theory, Pearson Education Singapore.
${ }^{1}$ Bapat Mukund V.
At and Post: Hindale, Tal. : Devgad, Dist.: Sindhudurg, Maharashtra. India 416630.

