Product cordial labeling of one point union graphs related to shell graphs

Mukund V. Bapat

Abstract. We discuss one point union graphs of shell S_4 related graphs. We discuss $S_4^{(k)}$, $Fl(S_4)^{(k)}$ etc for Product cordial labeling.

Key words: labeling, cordial, product, wheel, crown. tail graph. Subject Classification: 05C78

2. Introduction: The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [8], A dynamic survey of graph labeling by J.Gallian [7] and Douglas West.[8]. I.Cahit introduced the concept of cordial labeling [6]. There are variety of cordial labeling available in labeling of graphs. Sundaram, Ponraj, and Somasundaram [9] introduced the notion of product cordial labeling. A product cordial labeling of a graph G with vertex set V is a function f from V to {0, 1} such that if each edge uv is assigned the label f(u)f(v), the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1, and the number of edges labeled with 0 and the number of vertices with labeling is called a product cordial graph. We use $v_f(0,1) = (a, b)$ to denote the number of vertices with label 1 are a in number and the number of vertices with label 0 are b in number. Similar notion on edges follows for $e_f(0,1) = (x, y)$.

A lot of work is done in this type of labeling so far. One interested in survey may refer Dynamic survey in Graph labeling by J. Gallian.We mention a very short part of it. Sundaram, Ponraj, and Somasundaram have shown that trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; PmUPn; CmUPn; PmUK1,n; WmUFn (Fn is the fan Pn+K1); K1,mUK1,n; WmU K1,n; Wm UPn; Wm UCn; the total graph of P_n has vertex set V (Pn)UE(Pn) with two vertices adjacent whenever they are neighbors in Pn); Cn if and only if n is odd; $C_n^{(t)}$, the one-point union of t copies of C_n , provided t is even or both t and n are even; K2+mK1 if and only if m is odd; C_mUP_n if and only if m+n is odd; $K_{m,n}$ UPs if s > mn; Cn+2UK1,n; KnUKn,(n-1)/2 when n is odd; KnUKn-1,n/2 when n is even; and P2 n if and only if n is odd. They also prove that $K_{m,n}$ (m,n > 2), $P_m \times P_n$ (m,n > 2) and wheels are not product cordial and if a (p,q)-graph is product cordial graph, then q 6 (p-1)(p + 1)/4 + 1. In this paper We show that one point union of G = FL(C_3), , bull of C_3, crown of C_3, double crown of C_3, C_3^{++}, tail(C_3,2P_2), C_3 attached with 2 pendent edges attached at adjacent vertices and show them to be Product cordial under certain conditions.

3. Preliminaries:

3.1 Fusion of vertex. Let G be a (p, q) graph. Let $u \neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has p-1vertices and at least q-1 edges. If $u \in G_1$ and $v \in G_2$, where G_1 is (p_1,q_1) and G_2 is (p_2,q_2) graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has p_1+p_2-1 vertices and $q_1 + q_2$ edges. Sometimes this is referred as "u is identified with ...". The concept is well elaborated in John Clark and D. Holton [6]

3.2 Crown graph. It is $C_n \square K_2$. At each vertex of cycle a n edge was attached. We develop the concept further to obtain crown for any graph. Thus crown (G) is a graph $G \square K_2$. It has a pendent edge attached to each of it's vertex. If G is a (p,q) graph then crown(G) has q+p edges and 2p vertices. 3.3 Flag of a graph G denoted by FL(G) is obtained by taking a graph G=G(p,q). At suitable vertex of G attach a pendent edge. It has p+1 vertices and q+1 edges.

3.4 $G^{(K)}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If G is a (p, q) graph then $|V(G_{(k)}| = k(p-1)+1$ and |E(G)| = k.q3.5 A bull graph bull(G) was initially defined for a C₃-bull. It has a copy of G with an pendent edge each fused with any two adjacent vertices of G. For G is a (p,q) graph, bull(G) has p+2 vertices and q+2 edges.

3.6 A tail graph (also called as antenna graph) is obtained by fusing a path p_k to some vertex of G. This is denoted by tail(G, P_k). If there are t number of tails of equal length say (k-1) then it is denoted by tail(G, tp_k). If G is a (p,q) graph and a tail P_k is attached to it then tail(G, P_k) has p+k-1 vertices and q+k-1 edges. 4. Main Results:

Theorem 4.1 Let $G = S_4^{(K)}$. Then G is product cordial iff k is an even number. Proof: We define ith copy of S_4 in G as : the cycle C_4 of S_4 as $(u_{i,1}, c_{i,1}, u_{i,2}, c_{i,2}, u_{i,3}, c_{i,3}, u_{i,4}, c_{i,4}, u_{i,1})$; the chord $(u_{i,1}u_{i,3})$; i = 1, 2, ...k.

Define a function f: V(G) \rightarrow { 0,1 } as follows: Case k = 2x, an even number. The vertex common to all copies of S₄ is say u_{i,1}. f(u_{i,j}) = 1 for all i = 1, 2, ...x, and all j = 1, 2, 3, 4. f(u_{i,j}) = 0 for all i = x+1,... 2x, and all j = 2, 3, 4. The label number distribution is $v_f(0,1) = (3x,3x+1)$; $e_f(0,1) = (5x,5x)$. If we change the common point on G the same function f works as product cordial labeling. The only one thing is required is that the vertex common to all copies of S_4 is labeled as '1'.

Case K is an odd number say 2x+1.

We need $v_f(0) = v_f(1)$. This produces $e_f(0) = e_f(1)+2$ at least. Therefore the condition $|e_f(0)-e_f(1)| \le 1$ is not satisfied. The graph is not product cordial.

Theorem 4.2 Let $G' = FL(S_4)$ then $G = G'^{(k)}$ is product cordial for all k if one point union is taken at any vertex other than pendent vertex. If the common vertex is taken at pendent vertex then G is product cordial iff k is even.

Proof: We define ith copy of FL(S₄) in G as : the cycle C₄ of S₄ as $(u_{i,1},c_{i,1},u_{i,2},c_{i,2},u_{i,3},c_{i,3},u_{i,4},c_{i,4},u_{i,1})$; the chord $(u_{i,1}u_{i,3})$; i = 1, 2, ...k. and the pendent vertex $u_{i,5}$ with corresponding pendent edge $(u_{i,1}u_{i,5})$. Thus G has 4k+1 vertices and 6k edges. In structure 1 we take vertex common to all copies as $u_{i,1}$, the degree three vertex on S₄. In structure 2 we take vertex common to all copies as $u_{i,2}$, the degree two vertex on S₄.

Define a function f: V(G) \rightarrow { 0,1} as follows: (The one point union of FL(S₄) is taken at vertex S4.

Case k = 2x, an even number.

Let the common point to all copies of $FL(S_4)$ be $u_{i,1}$

 $f(u_{i,j}) = 1$ for all i = 1, 2, ...x, and all j = 1, 2, 3, 4, 5.

 $f(u_{i,i}) = 0$ for all i = x+1, ... 2x, and all j = 2, 3, 4, 5.

The label number distribution is $v_f(0,1) = (4x, 4x+1)$; $e_f(0,1) = (6x, 6x)$.

If we change the common point on G the same function f works as product cordial labeling. The only one thing is required is that the vertex common to all copies of $FL(S_4)$ is labeled as '1'.

Case k = 2x+1. Let the common point to all copies of S₄ be $u_{i,1}$

 $f(u_{i,j}) = 1$ for all i = 1, 2, ...x, and all j = 1, 2, 3, 4, 5.

 $f(u_{i,j}) = 0$ for all i = x+1,...2x, and all j = 2, 3, 4, 5.

 $f(u_{i,j}) = 1$ for i = 2x+1, and all j = 1, 2, 3;

 $f(u_{i,j}) = 1$ for i = 2x+1, and all j = 4, 5.

The label number distribution is $v_f(0,1) = (4x+2,4x+3)$; $e_f(0,1) = (6x+3,6x+3)$. If we change the common point on G the same function f works as product cordial labeling. The only one thing is required is that the vertex common to all copies of FL(S₄) be labeled as 1. (in all above cases it was $u_{i,1}$)

If the one point union of $FL(S_4)$ is taken at pendent vertex of $FL(S_4)$ then for k = 2x only the G is product cordial graph. The same function as above will work with condition that

the vertex common to all copies of $FL(S_4)$ be labeled as 1. When k = 2x+1 this graph is not product cordial.

Theorem 4.3 Let $G' = Bull(S_4)$. Then $G = G^{(k)}$ is product cordial for all k when common vertex is a cycle C_4 vertex and if the common point is a pendent vertex then for k = 2x only.

Proof: We define ith copy of Bull(S₄) in G as : the cycle C₄ of S₄ as $(u_{i,1},c_{i,1},u_{i,2},c_{i,2},u_{i,3},c_{i,3},u_{i,4},c_{i,4},u_{i,1})$; the chord $(u_{i,1}u_{i,3})$, two pendent edges as $(u_{i,1}u_{i,5})$, $(u_{i,2}u_{i,6})$ corresponding to pendent vertices $u_{i,5}$, $u_{i,6}$; i = 1, 2, ...k. Thus G has 5k+1 vertices and 7k edges.

Case k = 2x, an even number.

Let the common point to all copies of $bull(S_4)$ be $u_{i,1}$

 $f(u_{i,j}) = 1$ for all i = 1, 2, ...x, and all j = 1, 2, ..., 6.

 $f(u_{i,j}) = 0$ for all i = x+1,...2x, and all j = 2, 3, ..., 6

The label number distribution is $v_f(0,1) = (5x, 5x+1)$; $e_f(0,1) = (7x,7x)$. If we change the common point on G to some other vertex on cycleC₄ of S₄ (i.e the vertices $u_{i,2}$, $u_{i,3}$, $u_{i,4}$) same function f works as product cordial labeling.

Case k = 2x + 1, an odd number.

Let the common point to all copies of $bull(S_4)$ be $u_{i,1}$

 $f(u_{i,j}) = 1$ for all i = 1, 2, ...x, and all j = 1, 2, ..., 6.

 $f(u_{i,j}) = 0$ for all i = x+1,...2x, and all j = 2, 3, ..., 6

 $f(u_{i,i}) = 1$ for all i = 2x+1 and all j = 1, 2, 3.

 $f(u_{i,i}) = 0$ for all i = x+1,...2x, and all j = 4, 5, 6.

The label number distribution is $v_f(0,1) = (4x+3, 4x+3)$; $e_f(0,1) = (7x+4, 7x+3)$.

If we change the common point on G to some other vertex on cycle C_4 of S_4 (i.e the vertices $u_{i,2}$, $u_{i,3}$, $u_{i,4}$) same function f works as product cordial labeling.

If the common vertex to all k copies of bull(S₄) in G is taken as a pendent vertex ($u_{i,5}$ or $u_{i,6}$) then the same function as above gives us product cordial labeling for k = 2x an even number. Also the label number distribution is same. But when k = 2x+1 the graph is not product cordial.

Theorem 4.4 The one point union of k copies of S_4^+ i.e. $G = (S_4^+)^{(k)}$ is product cordial.

Proof: We define i^{th} copy of S_4^+ in G as : the cycle C_4 of S_4 as $(u_{i,1},c_{i,1},u_{i,2},c_{i,2},u_{i,3},c_{i,3},u_{i,4},c_{i,4},u_{i,1})$; the chord $(u_{i,1}u_{i,3})$, four pendent edges as $(u_{i,j}u_{i,j+4})$; j=1,2,3,4. Corresponding to pendent vertices $u_{i,j}$, i=1,2,...k and j=5,6,7,8. Thus G has 7k+1 vertices and 9k edges.

Case k = 2x, an even number.

Let the common point to all copies of G be $u_{i,1}$ (or any one on S_4)

 $f(u_{i,j}) = 1$ for all i = 1, 2, ...x, and all j = 1, 2, ..., 8.

 $f(u_{i,i}) = 0$ for all i = x+1,...2x, and all j = 2, 3, ..., 8

The label number distribution is $v_f(0,1) = (7x, 7x+1)$; $e_f(0,1) = (9x,9x)$.

Case k = 2x+1, an even number.

Let the common point to all copies of G be $u_{i,1}$

 $f(u_{i,j}) = 1$ for all i = 1, 2, ..., x, and all j = 1, 2, ..., 8. $f(u_{i,j}) = 0$ for all i = x+1,...2x, and all j = 2, 3, ..., 8. $f(u_{i,j}) = 1$ for all i = 1, 2, ...x, and all j = 1, 2, 3, 5 $f(u_{i,j}) = 0$ for all i = x+1,...2x, and all j = 4,6,7,8The label number distribution is $v_f(0,1) = (7x+3, 7x+4)$; $e_f(0,1) = (9x+5, 9x+4)$. Let the common point be a pendent vertex say u_{15} . Labels up to first 2x copies are same as above. Then labels on $(2x+1)^{th}$ copy of S_4^+ are given by : $f(u_{i,i}) = 1$ for all i = 2x+1, and all i = 1, 2, 3, 5. $f(u_{i,i}) = 0$ for all i = 2x+1, and all j = 4,6,7,8. The label number distribution is $v_f(0,1) = (7x+3, 7x+4)$; $e_f(0,1) = (9x+5, 9x+4)$. Let G' be the graph obtained by fusing two pendent edges at any vertex of S_4 . G' = (tail(S_4 , 2P₂). Then G'^(k) is product cordial Theorem 4.5 for all k if the common vertex is any vertex which is not pendent vertex. If common vertex is pendent vertex then k = 2x only. $Proof: We define i^{th} copy of G' in G as: the cycle C_4 of S_4 as (u_{i,1},c_{i,1},u_{i,2},c_{i,2},u_{i,3},c_{i,3},u_{i,4},c_{i,4},u_{i,1}); the chord (u_{i,1}u_{i,3}), two pendent edges as (u_{i,1}u_{i,5}), the chord (u_{i,1}u_{i,3}), the chord (u_{$ $(u_{i,1}u_{i,6})$. Corresponding to pendent vertices $u_{i,j}i = 1, 2, ...k$ and j = 5, 6. Thus G has 5k+1 vertices and 7k edges. There are two structures. In structure 1 we take the common point as a point on S_4 in G. In structure 2 we take pendent vertex as a common point on G. Structure 1: Case k = 2x, an even number. $f(u_{i,i}) = 1$ for all i = 1, 2, ..., x, and all j = 1, 2, ..., 6. $f(u_{i,j}) = 0$ for all i = x+1,...2x, and all j = 2, 3, ..., 6. The label number distribution is $v_f(0,1) = (5x, 5x+1)$; $e_f(0,1) = (7x,7x)$. Case k = 2x+1, an odd number. $f(u_{i,i}) = 1$ for all i = 1, 2, ..., x, and all j = 1, 2, ..., 6. $f(u_{i,i}) = 0$ for all i = x+1,...2x, and all j = 2, 3, ..., 6. $f(u_{i,i}) = 1$ for all i = 2x+1. and all j = 1, 2, 3. $f(u_{i,i}) = 0$ for all i = 2x+1. and all j = 4, 5, 6. The label number distribution is $v_f(0,1) = (5x+2, 5x+3)$; $e_f(0,1) = (7x+4, 7x+3)$. Fig 4.2 $G^{(k)}$ $v_f(0,1) = (8,8); e_f(0,1) = (11,10)$ Structure 2: Case k = 2x, an even number. $f(u_{i,i}) = 1$ for all i = 1, 2, ..., x, and all j = 1, 2, ..., 6.

 $f(u_{i,i}) = 0$ for all i = x+1,...2x, and all j = 2, 3, ..., 6.

The label number distribution is $v_f(0,1) = (5x, 5x+1)$; $e_f(0,1) = (7x,7x)$.

Case k = 2x+1, an odd number. Then there is no product cordial labeling.

In this paper we have obtained one point union graphs on S_4 , and and the graphs obtained from S_4 by fusing pendent edges (**Conclusions:** maximum two at a vertex) at vertices of S₄.We have studied these path unions for product cordiality. We have shown that: 2)

 $S_4^{(K)}$ is product cordial iff k is an even number. 1)

Let G' = FL(S₄) then G = $G^{(k)}$ is product cordial for all k if one point union is taken at any vertex other than pendent vertex. If the common vertex is taken at pendent vertex then G is product cordial iff k is even.

Let G' = Bull(S₄). Then G= G'^(k) is product cordial for all k when common vertex is a cycle C₄ 3) vertex and if the common point is a pendent vertex then for k = 2x only. 4)The one point union of k copies of S_4^+ i.e. $G = (S_4^+)^{(k)}$ is product cordial. 5) Let G' be the graph obtained by fusing two pendent edges at any vertex of S_4 . $G' = (tail(S_4, 2P_2))$. Then $G'^{(k)}$ is product cordial for all k if the common vertex is any vertex which is not pendent vertex. If common vertex is pendent vertex then k = 2x only. It is necessary to study these types og graphs further.

References:

Bapat M.V. Some new families of product cordial graphs, Proceedings, Annual International conference, CMCGS 2017, Singapore [1] ,110-115

Bapat M.V. Some vertex prime graphs and a new type of graph labelling Vol 47 part 1 yr 2017 pg 23-29 IJMTT [2]

Bapat M. V. Some complete graph related families of product cordial graphs. Arya bhatta journal of mathematics and informatics vol 9 [3] issue 2 july-Dec 2018.

[4] Bapat M.V. Extended Edge Vertex Cordial Labelling Of Graph ", International Journal Of Math Archives IJMA Sept 2017 issue

[5] Bapat M.V. Ph.D. Thesis, University of Mumbai 2004.

[6] John Clark and D. Holton, A book "A first look at graph Theory", world scientific

[7] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.Harary, Theory, Narosa publishing, New Delhi

[8] J. Gallian Electronic Journal Of Graph Labeling (Dynamic survey)2016

[9] Harary, Graph Theory, Narosa publishing, New Delhi

[10] M. Sundaram, R. Ponraj, and S. Somasundaram, "Product cordial labeling of graph," Bulletin of Pure and Applied Science, vol. 23, pp. 155–163, 2004.

[11] Douglas West, Introduction to graph Theory, Pearson Education Singapore. ¹Bapat Mukund V.

At and Post: Hindale, Tal. : Devgad, Dist.: Sindhudurg, Maharashtra. India 416630.

