Cordial Labeling Of One Point Union Of Tail- C₅ Garphs

Mukund V.Bapat¹

Abstract: We discuss graphs of type G(k) i.e. one point union of k-copies of G for cordial labeling. We take G as tail graph. A tail graph (or antenna graph) is obtained by attaching a path P_m to a vertex of given graph. It is denoted by $tail(G,P_m)$ where G is given graph. We take G as C_5 and restrict our attention to m=2,3 in P_m . Further we consider all possible structures of G(k) by changing the common point and obtain non-isomorphic structures. We show all these structures as cordial graphs. This is called as invariance of different structures of G^(k) under cordial labeling.

Key words: cordial, one point union, tail graph, cycle, labeling, path.

Subject Classification: 05C78

Introduction

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Holton [6] Graph Theory by Harary [7], A dynamic survey of graph labeling by J.Gallian [9] and Douglas West. [10]. I. Cahit introduced the concept of cordial labeling [6]. $f:V(G) \rightarrow \{0,1\}$ be a function. From this label of any edge (uv) is given by |f(u)-f(v)|. Further number of vertices labeled with 0 i.e $v_f(0)$ and the number of vertices labeled with 1 i.e.v_f(1) differ at most by one .Similarly number of edges labeled with 0 i.e.e_f(0) and number of edges labeled with 1 i.e.e_f(1) differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that: every tree is cordial; Kn is cordial if and only if $n \le 3$; $K_{m,n}$ is cordial for all m and n; the friendship graph $C_3^{(t)}$ (i.e., the one-point union of t copies of C₃) is cordial if and only if t is not congruent to 2 (mod 4); all fans are cordial; the wheel W_n is cordial if and only if n is not congruent to 3 (mod 4). A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [9].

Our focus of attention is on one point unions on different graphs. For a given graph there are different one point unions (upto isomorphism) structures possible. It depends on which point on G is used to fuse to obtain one point union. We have shown that for G = bull on C_3 , bull on C_4 , C_3^+ , C_4^+ e the different path union $P_m(G)$ are cordial [4]. It is called as invariance under cordial labeling. We use the convention that $v_1(0,1) = (a,b)$ to indicate the number of vertices labeled with 0 are a in number and that number of vertices labeled with 1 are b. Further $e_f(0,1) = (x,y)$ we mean the number of edges labeled with o are x and number of edges labeled with 1 are. The graph whose cordial labeling is available is called as cordial graph. In this paper we define tail graph and obtain one point union graphs on it.

3. **Preliminaries**

3.1 Tail Graph: A (p,q) graph G to which a path P_m is fused at some vertex. This also can be explained as take a copy of graph G and at any vertex of it fuse a path P_m with it's one of the pendent vertex. It's number of vertices are P+m-1 and edges are by q + m-1. It is denoted by tail(G, P_m). In this paper we fix G as C_3 and take P_m for m = 2, 3, 4, 5.

3.2 Fusion of vertices. Let $u \neq v$ be any two vertices of

G. We replace these two vertices by a single vertex say x and all edges incident to u and v are now incident to x. If loop is formed then it is deleted.[6] 3.3 G^(K) it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If G is a (p, q) graph then $|V(G_{(k)}| = k(p-1)+1$ and |E(G)| = k.q

Results Proved:

Theorem4.1All non-isomorphic one point union on k-copies of graph obtained on $G = tail(C_5, P_2)$ also called as flag (C_5) given by G^(k) are cordial graphs. Proof:

Fig 4.4 $v_f(0,1) = (3,3) e_f(0,1) = (3,3)$

Fig 4.5 $v_f(0,1) = (4,2) e_f(0,1) = (3,3)$

From Fig 4.1 it follows that we can take one point union at four vertices 'a', 'b', 'c'and 'd'. For the one point union at vertices a, c or d we fuse the type A and Type B label at vertices a, c or d respectively. For the one point union at vertex 'b' we use type C and type D label and fuse it at vertex b. For given k, if k = 2x then x copies of type A (type C) and x copies of type B (type D) are fused at desired point .If K = 2x+1 then one more copy of Type A (type C) is used than the copies of type B (type D) used.

In both case the label number distribution is given by $v_f(0,1) = (3+5x, 3+5x)$, $e_f(0,1) = (3k,3k)$ where k = 2x+1, x=0,1,2... If k = 2x; x = 1,2,... then we have, $v_f(0,1) = (6+5(x-1),5+5(x-1))$, $e_f(0,1) = (3k,3k)$. Thus the graph is cordial.

Theorem 4.2 All non- isomorphic one point union on k-copies of graph obtained on $G = tail(C_5, 2P_2)$ given by $G^{(k)}$ are cordial graphs.

From Fig 4.6 it follows that we can take one point union at four vertices 'a', 'b', 'c'and 'd'. For the one point union at vertices a, c or d we fuse the type A and Type B label at vertices a, b or c respectively. For the one point union at vertex 'b' we use type C and type D label and fuse it at vertex b. For given k, if k = 2x then x copies of type A (type

C) and x copies of type B (type D) are fused at desired point. If K = 2x+1 then one more copy of Type A (type C) is used than the copies of type B (type D) used.

Fig 4.6 Four non-isomorphic one point union are possible at points 'a', 'b','c' and 'd'

Fig 4.7 $v_f(0,1) = (4,3) e_f(0,1) = (3,4)$

Fig 4.8 $v_f(0,1) = (4,3) e_f(0,1) = (4,3)$

Fig
$$4.9 \text{ v}_f(0,1) = (4,3) \text{ e}_f(0,1) = (3,4)$$

Fig 4.10 $v_f(0,1) = (4,3) e_f(0,1) = (3,4)$

Fig 4.11 Four non-isomorphic one point union are possible at points 'a', 'b','c', 'd','e'.

In both cases the label number distribution is given by $v_f(0,1) = (4+6x,$

3+6x), $e_f(0,1)=(3+7x,4+7x)$ where k=2x+1, x=0,1,2... If k=2x; x=1,2,... then we have, $v_f(0,1)=(7+6(x-1),6$ 1)), $e_f(0,1) = (7(k-1),7(k-1))$. Thus the graph is cordial.

4.3 All non- isomorphic one point union on k-copies of graph obtained on $G = tail(C_5, P_3)$ given by $G^{(k)}$ are cordial graphs. Proof:

Fig 4.12 $v_f(0,1) = (4,3) e_f(0,1) = (4,3)$

Fig 4.12 $v_f(0,1) = (4,3) e_f(0,1) = (3,4)$

Fig 4.12 $v_f(0,1) = (4,3) e_f(0,1) = (4,3)$

Fig 4.12 $v_f(0,1) = (4,3) e_f(0,1) = (4,3)$ Fig 4.12 $v_f(0,1) = (4,3) e_f(0,1) = (4,3)$

From Fig 4.11 it follows that we can take one point union at five vertices 'a', 'b', 'c', 'd'or 'e'. For the one point union at vertices b,d,or e we fuse the type A and Type B label at vertices b,d or vertex e respectively. union at vertex 'a' we use type C and type F label and fuse it at vertex a. For one point union at point c we use type D and type C labeling and fuse it at vertex c. For given k, if k = 2x then x copies of type A (type C) (Type D) and x copies of type B (type F) (Type C) are fused at desired point. If K = 2x+1 then one more copy of Type A (type C) (type D) is used than the copies of type B (type F)(Type C) used. In all cases the label number distribution is given by $v_f(0,1) = (4+6x, 3+6x), e_f(0,1) = (3+7x,4+7x)$ where k = 2x+1, x=0,1,2... If k = 2x; x = 1,2,... then we have, $v_f(0,1) = (4+6x, 3+6x), e_f(0,1) = (4+6x, 3+6x),$ (7+6(x-1),6+6(x-1)), $e_f(0,1) = (7(k-1),7(k-1))$. Thus the graph is cordial.

In this paper wedefine some new families obtained from C5 and fusing to one of it's vertex pendent edges upto two or a path oflength 2. We show that 1) 1 All non- isomorphic one point union on k-copies of graph obtained on $G = tail(C_5, P_2)$ also called as flag(C₅) given by $G^{(k)}$ are cordial graphs. 2) All non- isomorphic one point union on k-copies of graph obtained on $G = tail(C_5, 2P_2)$ given by $G^{(k)}$ are cordial graphs. isomorphic one point union on k-copies of graph obtained on $G = tail(C_5, P_3)$ given by $G^{(k)}$ are cordial graphs.

References:

M. Andar, S. Boxwala, and N. Limye, New families [1] of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]

M. Andar, S. Boxwala, and N. Limye, On the cordiality of the t-ply Pt(u,v), [2] Ars Combin., 77 (2005) 245-259. [135] [3]

Bapat Mukund, Ph.D. thesis submitted to university of Mumbai. India 2004. [4] Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling, IJSAM feb.2018 issue.

[5] I.Cahit,

Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.

J. Clark and D. A. Holton, A first [6] look at graph theory; world scientific. [7] Harary, Graph Theory, Narosa publishing Yilmaz, Cahit, E-cordial graphs, Ars New Delhi [8] combina, 46,251-256. [9] J.Gallian, Dynamic survey of graph labeling, E.J.C 2017 [10] D. WEST, Introduction to Graph Theory, Pearson Education Asia.

¹Mukund V. Bapat, Hindale, Tal: Devgad, Sindhudurg Maharashtra, India 416630

mukundbapat@yahoo.com