
© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 484

Secure Cloud Storage Auditing with Key Disclosure

Resistance

*J.RAJYA LAKSHMI **M. SATYAM REDDY

*PG Scholar, Dept of CSE, Loyola Institute Of Technology And Management, dhulipalla, sattenapalli, – Guntur, AP, India.

** Asst. Professor, Dept of CSE, Loyola Institute Of Technology And Management, dhulipalla, sattenapalli, – Guntur, AP,

India.

 ABSTRACT
Cloud storage auditing is viewed as an imperative service to
corroborate the veracity of the data in public cloud. Existing
auditing protocols are all based on the supposition that theClient’s

secret key for auditing is completely protected. Such assumption
may not always be held, due to the probably weak sense of security

and/or low security settings at the client. In most of the current
auditing protocols would inevitably become unable to work when a
secret key for auditing is exposed. It is investigated on how to
reduce the damage of the client’s key revelation in cloud storage
auditing, and provide the first handy elucidation for this new
problem setting. Formalized the definition and the security model

of auditing protocol with key-exposure resilience and propose such
a protocol. Utilized and developed a novel authenticator
construction to support the forward security and the property of
block less verifiability using the current design. The security proof
and the performance analysis show that the projected protocol is
protected and well-organized.

Keywords
Data storage, cloud storage auditing, cloud computation, key
exposure resistance

1. INTRODUCTION
Cloud computing can help enterprises improve the creation and
delivery of IT solutions by providing them with access to services
in a cost-effective and flexible manner [2]. Clouds can be classified
into three categories, depending on their accessibility restrictions
and the deployment model. They are:

• Public Cloud,
• Private Cloud, and

• Hybrid Cloud.

A public Cloud is made available in a pay-as-you-go manner to the
general public users irrespective of their origin or affiliation. A
private Cloud’s usage is restricted to members, employees, and

trusted partners of the organization. A hybrid Cloud enables the
use of private and public Cloud in a seamless manner. Cloud

computing applications span many domains, including business,
technology,government, health care, smart grids, intelligent
transportation networks, life sciences, disaster management,
automation, data analytics, and consumer and social networks.

Various models for the creation, deployment, and delivery of these
applications as Cloud services have emerged. Cloud storage
auditing is used to verify the integrity of the data stored in public
cloud, which is one of the important security techniques in cloud
storage. In recent years, auditing protocols for cloud storage have
attracted much attention and have been researched intensively[16].

These protocols focus on numerous different characteristics of
auditing, achieving high bandwidth and

computation efficiency is one of the essential concerns. For that
perseverance, the Homomorphic Linear Authenticator (HLA)
technique that maintains block less verification is explored to

diminish the overheads of computation and communication in
auditing protocols, which allows the auditor to verify the integrity
of the data in cloud without retrieving the whole data. Many cloud
storage auditing protocols have been proposed based on this

technique. In order to reduce the computational burden of the
client, a third-party auditor (TPA) is introduced to help the client to
periodically check the integrity of the data in cloud.

However, it is possible for the TPA to get the client’s data after it
executes the auditing protocol multiple times. Auditing protocols
in [9] and [10] are designed to ensure the privacy of the client’s
data in cloud. While all existing protocols focus on the faults or
dishonesty of the cloud, they have overlooked the possible weak
sense of security and/or low security settings at the client. The
procedure to deal with the client’s secret key exposure for cloud
storage auditing is a very important problem. It is focused here on
how to reduce the damage of the clients key exposure in cloud
storage auditing.

The process involves the downloading of whole data from the
cloud, producing new authenticators, and re-uploading everything
back to the cloud, all of which can be tedious and cumbersome in
designing a cloud storage auditing protocol with built-in key-
exposure resilience. Besides, it cannot always guarantee that the
cloud provides real data when the client regenerates new
authenticators. Unswervingly espousing Standard key-evolving
technique is also not suitable for the new problem setting. It can
lead to repossessing all of the actual files blocks when the
verification is proceeded. This is partly because the technique is
incompatible with block less verification. The resulting
authenticators cannot be accrued, leading to unacceptably high
computation and communication cost for the storage auditing [6].

2. RELATED WORK
In order to check the integrity of the data stored in the remote
server, many protocols were proposed [14] These protocols
focused on various requirements such as high efficiency, stateless
verification, data dynamic operation, privacy protection, etc.
According to the role of the auditor, these auditing protocols can

be divided into two categories: private verification and public
verification. In an auditing protocol with private verifiability, the
auditor is provided with a secret that is not known to the proven or
other parties. Only the auditor can verify the integrity of the data.
In contrast, the verification algorithm does not need a secret key
from the auditor in an auditing protocol with public verifiability.

Therefore, any third party can play the role of the auditor in this
kind of auditing protocols. Atenieseet al. [1] firstly considered the
public verification and proposed the notion of
“provable data possession” (PDP) for ensuring data possession at
untrusted storages. They used the technique of HLA and random
sample to audit outsourced data. Juels and Kaliski Jr. explored a
“proof of retrievability” (PoR) model.
They used the tools of spot-checking and error-correcting codes to

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 485

ensure both possession and retrievability of files on remote storage

systems. Shacham and Waters [5] gave two short and efficient

homomorphic authenticators: one has private verifiability which is

based on pseudorandom functions; the other has public verifiability

which is based on the BLS signature. Dodiset al. [31] focused on

the study on different variants of existing POR work. Shah et al.

introduced a TPA to keep online storage honest. The protocol

requires the auditor to maintain the state, and suffers from bounded

usage. Wang et al. [10] provided a public auditing protocol that has

privacy-preserving property. In order to make the protocol achieve

privacy-preserving property, they integrate the HLA with random

masking technique. Wang proposed a proxy provable data

possession protocol. In this protocol, the client delegates its data

integrity checking task to a proxy. Dynamic data operations for

audit services are also attended in order to make auditing more

flexible. Atenieseet al. [2] firstly proposed a partially dynamic PDP

protocol. Wang et al. [11] proposed another auditing protocol

supporting data dynamics.

In this protocol, they utilized the BLS-based HLA and Merkle
Hash Tree to support fully data dynamics. Erwayet al. [13]
extended the PDP model and proposed a skip list-based protocol
with dynamics support. Zhu et al. proposed a cooperative provable
data possession protocol which can be extended to support the
dynamic auditing. Yang and Jia [9] proposed a dynamic auditing
protocol with privacy-preserving property. The problem of user
revocation in cloud storage auditing was considered in [15]. Most
of above auditing protocols are all built on the assumption that the
secret key of the client is absolutely secure and would not be
exposed. But as we have shown previously, this assumption may
not always be true. The current work advances the field by
exploring how to achieve key-exposure resistance in cloud storage
auditing, under the new problem settings.

3. SYSTEM DESIGN
The first study has been done on how to achieve the key-exposure
resilience in the storage auditing protocol and propose a new
concept called auditing protocol with key-exposure resilience [4].
In such a protocol, any dishonest behaviors, such as deleting or
modifying some client’s data stored in cloud in previous time
periods, can all be detected, even if the cloud gets the client’s
current secret key for cloud storage auditing [9]. This very
important issue is not addressed before by previous auditing
protocol designs.

We further formalize the definition and the security model of
auditing protocol with key-exposure resilience for secure cloud
storage. We design and realize the first practical auditing protocol
with built-in key-exposure resilience for cloud storage. In order to
achieve current goal, we employ the binary tree structure, seen in a
few previous works [4] on different cryptographic designs, to
update the secret keys of the client. Such a binary tree structure can
be considered as a variant of the tree structure used in the HIBE
scheme [9]. In addition, the pre-order traversal technique is used to
associate each node of a binary tree with each time period. In
current detailed protocol, the stack structure is used to realize the
pre-

order traversal of the binary tree. We also design a novel
authenticator supporting the forward security and the property of
block less verifiability.

We prove the security of current protocol in the formalized

security model, and justify its performance via concrete asymptotic
analysis. Indeed, the proposed protocol only adds reasonable

overhead to achieve the key-exposure resilience. We also show

that current proposed design can be extended to support the TPA,
lazy update and multiple sectors. An auditing system for secure

cloud storagein Fig. 1. The system involves two parties: the client

(files owner) and the cloud. The client produces files and

uploadsthese files along with corresponding authenticators to
thecloud. The cloud stores these files for the client and provides

download service if the client requires. Each file is
furthermoredivided into multiple blocks [2]. For the simplicity of

description,The client can periodically audit whether his files in
cloud arecorrect. The lifetime of files stored in the cloud is divided

intoT + 1 time periods . In currentmodel, the client will update his
secret keys for cloud storageauditing in the end of each time

period, but the public keyis always unchanged. The cloud is
allowed to get the client’ssecret key for cloud storage auditing in

one certain time period.It means the secret key exposure can
happen in this systemmodel.An auditing protocol with key-

exposureresilience is composed by five algorithms (SysSetup,Key
Update, AuthGen, ProofGen, ProofVerify), Current security model

considers the notion of the forwardsecurity [11] and data
possession property [1]. In Table I, we indicate a game to describe

an adversary A against thesecurity of an auditing protocol with
key-exposure resilience.

Fig. 1.1. System model of current cloud storage auditing

An auditing system for secure cloud storagein Fig. 1. The system
involves two parties: the client (files owner) and the cloud. The
client produces files and uploads these files along with
corresponding authenticators to the cloud. The cloud stores these
files for the client and provides download service if the client
requires. Each file is furthermoredivided into multiple blocks [2].
For the simplicity of description, The client can periodically audit
whether his files in cloud are correct. The lifetime of files stored in
the cloud is divided into T + 1 time periods . In current model, the
client will update his secret keys for cloud storage auditing in the
end of each time period, but

the public keyis always unchanged. The cloud is allowed to get the
client’s secret key for cloud storage auditing in one certain time
period. It means the secret key exposure can happen in this
systemmodel. An auditing protocol with key-exposureresilience is
composed by five algorithms (SysSetup,KeyUpdate, AuthGen,
ProofGen, ProofVerify), Current security model considers the
notion of the forward security [11] and data possession property
[1]. In Table I, we indicate a game to describe an adversary A
against the security of an auditing protocol with key-exposure
resilience.

Table 1: A game to describe an adversaryagainstthe
security of the protocol

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 486

The above security model captures that an adversary cannot forge a
valid proof for a time period prior to keyexposure without owning
all the blocks corresponding to a given challenge, if it cannot guess
all the missing blocks.In each time period prior to key exposure,
the adversary isallowed to query the authenticators of all the
blocks. Theadversary can be given a secret key for auditing in
thekey-exposure (break-in) time period.

4. PROPOSED SYSTEM
We firstly show two basic solutions for the key-exposure problem
of cloud storage auditing before we give current core protocol. The
first is a ingenuous solution, which in fact cannot fundamentally
solve this problem. In this solution, the client still uses the
traditional key revocation method. Once the client knows his secret
key for cloud storage auditing is exposed, he will revoke this secret
key and the corresponding public key. Meanwhile, he generates
one new pair of secret key and public key, and publishes the new
public key by the certificate update[8]. The authenticators of the
data previously stored in cloud, however, all need to be updated
because the old secret key is no longer secure. Thus, the client
needs to download all his previously stored data from the cloud,
produce new authenticators for them using the new secret key, and
then upload these new authenticators to the cloud[7].

The second is a slightly better solution, which can solve this
problem but has a large overhead. They are both impractical when

applied in realistic settings. And then we give current core protocol
that is much more efficient than both of the basic solutions.
Current goal is to design a practical auditing protocol withkey-
exposure resilience, in which the operational complexitiesof key
size, computation overhead and communication overheadshould be
at most sub linear to T. In order to achieve currentgoal, we use a

binary tree structure to appoint time periods and associate periods
with tree nodes by the pre-order traversal technique [14]. The
secret key in each time period is organizedas a stack. In each time
period, the secret key is updatedby a forward-secure technique
[18]. It guarantees that anyauthenticator generated in one time
period cannot be computedfrom the secret keys for any other time

period later than thisone. Besides, it helps to ensure that the
complexities of keyssize, computation overhead and
communication overhead areonly logarithmic in total number of
time periods T.

As aresult, the auditing protocol achieves key-exposure
resiliencewhile satisfying current efficiency requirements. As it
will be shownlater, in current protocol, the client can audit

the integrity of thecloud data still in aggregated manner, i.e.,
without retrievingthe entire data from the cloud. As same as the
key-evolvingmechanisms [11]–[13], current protocol does not
considerthe key exposure resistance during one time period.

The public key in current protocol is denoted by PK which isfixed
during the whole lifetime. In current protocol, each node ofthe
binary tree corresponding to j has one key pair (Swj,Rwj),where
Swjis called as the node secret key which is used to generate
authenticators and Rwjis called as verification valuewhich is used
to verify the validity of authenticators. The keypair of the root
node is denoted by (S, R). The client’s secretkey SK j in period j is
composed by two parts X j and _j .The first part X j is a set
composed by the key pair (Swj,Rwj)and the key pairs of the right
siblings of the nodes on thepath from the root to wj. That is, if
w_0 is a prefix of wj,then X j contains the secret key (Sw_1,
Rw_1). In current protocol,the first part X j is organized as a stack
satisfying first-in firstoutprinciple with (Swj,Rwj) on top. The
stack is initiallyset (S, R) in time period 0. The second part _j is
composedby the verification values from the root to node

wjexceptthe root. So Ωj= (Rwj|1, . . . ,Rwj|t) when wj= w1 · ·

·wt.

Description of Current Protocol:
1) SysSetup: Input a security parameter k and the total
time period T. Then
a) Run IG(1k) to generate two multiplicative groups G1,
G2 of some prime order q and an admissible pairingˆe :
G1 × G1 → G2.
b) Choose cryptographic hash functions H1 :G1 → G1, H2 : {0, 1}∗ × G1 → Z∗
qand H3 : {0, 1}∗ ×

G1 → G1. Select two independent generators g, u ∈G1.

c) The client selects ρ ∈Z∗qat random, and computes R = gρand S = H1(R)ρ.

Fig 1.2. An example to show the stack changes from time

period 0 to time period 9 when l = 4.

Table 1.2: Efficiency comparison

Current proposed protocol can easily be modified to supportthe
TPA because we have considered the public verificationduring
current design. In the modified auditing protocol supportingthe
TPA, the SysSetupalgorithm, the Key Update algorithmand the
AuthGenalgorithm are the same as the descriptionin Section 3. In
the Proof Gen algorithm, we only modify currentoriginal protocol
as follows: The TPA generates a challengeChal= {(i, vi)}i∈I, and
sends it to the cloud. After the cloudcompletes the same operations
as those in original protocolin Section 3, it sends the proof P to the
TPA instead of theclient. In the Proof Veri f y algorithm, we only
need to makethe TPA instead of the client verify the validity of the
tag andthe proof P[19].The block less verifiability means that the
cloud canconstruct a proof that allows the auditor to check the
integrityof certain file blocks in cloud, even when the auditor does
nothave access to the actual file blocks.

5. CONCLUSION
In the proposed paradigm, it is deliberated on how to deal with the
client’s key exposure in cloud storage auditing. A new standard
called auditing protocol with key-exposure resilience. The integrity

of the data formerly stored in cloud can still be substantiated even
if the client’s current secret key for cloud storage auditing is bare
in these kinds of protocols. It is enacted in thedefinition and the
security model of auditing protocol with key-exposure resilience,
and has given the practical solution. The security proof and the
asymptotic presentation assessment depicted that the protocol is
secure and efficient. The efficient comparison betweencurrent
protocol and earlier protocol based on BLS signature also has been
provided.

6. REFERENCES
[1] G. Atenieseet al., “Provable data possession at untrusted

stores,”inProc. 14th ACM Conf. Comput. Commun.Secur.,
2007,pp. 598–609.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik,

“Scalable andefficient provable data possession,” in

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 487

Proc. 4th Int. Conf. Secur. Privacy Commun.Netw., 2008,
Art. ID 9.

[3] F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, Y.

Deswarte, andJ.-J. Quisquater, “Efficient remote data
possession checking in criticalinformation infrastructures,”
IEEE Trans. Knowl. Data Eng., vol. 20,no. 8, pp. 1034–1038,
Aug. 2008.

[4] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP:

Multiplereplicaprovable data possession,” in Proc. 28th IEEE
Int. Conf. Distrib.Comput. Syst., Jun. 2008,
pp. 411–420.

[5] H. Shacham and B. Waters, “Compact proofs of

retrievability,”in Advances in Cryptology— ASIACRYPT.
Berlin, Germany:Springer-Verlag, 2008,
pp. 90–107.

[6] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly

auditable securecloud data storage services,” IEEE Netw., vol.
24, no. 4, pp. 19–24,Jul./Aug. 2010.

[7] Y. Zhu, H. Wang, Z. Hu, G.-J.Ahn, H. Hu, and S. S. Yau,

“Efficientprovable data possession for hybrid clouds,” in

Proc. 17th ACM Conf.Comput.Commun.Secur., 2010,

pp. 756–758.

[8] K. Yang and X. Jia, “Data storage auditing service in cloud

computing:Challenges, methods and opportunities,” World
Wide Web, vol. 15, no. 4,pp. 409– 428, 2012.

[9] K. Yang and X. Jia, “An efficient and secure dynamic auditing

protocolfor data storage in cloud computing,”
IEEE Trans. Parallel Distrib. Syst.,vol. 24, no. 9, pp. 1717–
1726, Sep. 2013.

[10] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou,

“Privacypreservingpublic auditing for secure cloud storage,”
IEEE Trans.Comput., vol. 62, no. 2, pp. 362– 375, Feb. 2013.

[11] B. G. Kang, J. H. Park, and S. G. Hahn, “A new forward

securesignature scheme,” Cryptology ePrint Archive,
Tech. Rep. 2004/183,2004. [Online]. Available:
http://eprint.iacr.org/2004/183

[12] J. Yu, F. Kong, X. Cheng, R. Hao, and G. Li, “One forward-

securesignature scheme using bilinear maps and its
applications,” Inf. Sci.,vol. 279, pp. 60–76, Sep. 2014.

[13] J. Yu, R. Hao, F. Kong, X. Cheng, J. Fan, and Y. Chen,

“Forwardsecureidentity-based signature: Security notions and
construction,” Inf.Sci., vol. 181, no. 3, pp. 648–660, 2011.

[14] C. Gentry and A. Silverberg, “Hierarchical ID-based

cryptography,”in Advances in Cryptology— ASIACRYPT.
Berlin, Germany:Springer-Verlag, 2002, pp. 548–566.

[15] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of retrievability

forlarge files,” in Proc. 14th ACM Conf. Comput.
Commun.Secur., 2007,pp. 584–597.

[16] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability

viahardness amplification,” in Proc. 6th Theory Cryptogr.
Conf., 2009,pp. 109–127.

[17] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan,

“Auditing tokeep online storage services honest,” in Proc.
11th USENIX WorkshopHot Topics Oper. Syst., 2007, pp. 1–
6.

[18] Y. Zhu, H. Hu, G.-J.Ahn, and M. Yu, “Cooperative provable

datapossession for integrity verification in multicloud
storage,” IEEETrans. Parallel Distrib. Syst., vol. 23, no. 12,
pp. 2231–2244,Dec. 2012.

http://www.jetir.org/

