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Abstract—The presence of reliable optical performance 

monitors plays the crucial role in achieving the robust, cost 

effective and self managed operation of optical network. There 

exist numerous OPMs based on the algorithmic approaches (LP's 

heuristic etc.) analyzing the eye diagram, constellation diagram 

and histogram. The performance of these conventional methods 

can be substantially increases by implementing the neural 

network for performance monitoring. The different approaches 

demonstrating application of neural network in optical network 

are summarized in this paper. The different network types, 

training techniques adopted till date are summarized. 
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I. INTRODUCTION 

The network performance is dependent on the channel 
configuration and distance. While distance is a primary driver 
for increased optical monitoring to mitigate transmission 
impairments, the use of optical switching elements will affect 
the way in which different impairments need to be monitored. 
For example, in static point-to-point systems chromatic 
dispersion might only be monitored to verify correct network 
installation or for in-service compensation. In a reconfigurable 
network, chromatic dispersion may need to be monitored for 
faults because the accumulated dispersion and its impact will 
change as the network changes. Furthermore, in an optical 
switching environment the individual channels will have 
unique histories and thus performance and accumulated 
impairments should be measured on a per channel basis [1-5]. 
Single-channel impairments are also less likely to be correlated 
with component alarms, particularly for components that act on 
the entire WDM band. For these reasons, functions such as 
wavelength routing and network reconfiguration may require 
advanced per-channel OPM to assist in the diagnosis of 
failures.OPM consists of three major tasks 

1. The transport or WDM channel management layer 
monitoring: It involves a determination of the optical 
domain characteristics essential for transport and channel 
management e.g. real time measurements of channel 
presence, wavelength registration, power levels and the 
spectral OSNR. 

2. The optical signal or channel quality layer monitoring: It 
involves analyzing a single wavelength and performs 
signal transition sensitive measurements like eye 
statistics, Q-factor, the electronic SNR, and distortion that 
occur within the eye due to dispersion and nonlinear 
effects.  

3. Protocol performance monitoring (PPM): This includes 
digital measurements such as the BER, when used to infer 
properties of the analog optical signal. 

 

 

 

Fig. 1. : overview of various optical impairments in optical network [6] 

 

There are several methods of implementing OPM in a line 
system.  

1. The non-disruptive dedicated monitor: where the 
signal is tapped on a WDM fiber and the monitor is 
shared among many wavelengths on a single fiber  

2. Disruptive shared monitor: this is the case in which 
one of multiple optical fibers can be switched to a 
monitor so the monitor is shared, but the monitoring is 
disruptive as it takes the fiber offline 

3. In-line monitor: the full optical signal is transmitted 
through the monitor and a nondestructive 
measurement is performed. This approach is most 
effective when the signal is demuxed into single 
channels and is often integrated with optical 
regeneration devices. 

 

Fig. 2. : A system with optical performance monitors [6] 

Several techniques have been proposed for OPM using off-
line digital signal processing of received electrical data signals. 
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These methods utilize amplitude histograms, power 
distributions or asynchronous sampling to estimate bit error 
rate (BER); or to use either delay-tap plots or pattern 
recognition techniques to identify multiple impairments; or to 
use the parameters derived from eye diagrams and histograms 
for the same purpose. The latter approach is to probe the 
network upon initialization and train each receiver to record a 
specific data eye-diagram pattern that corresponds to a 
specified range of potential physical parameters. These eye 
diagrams can be generated either from a synchronized sampler, 
or by a technique that regenerates such diagrams from 
asynchronous samples. Once the network is fully operational, 
variations in the received eye diagram from the ideal formation 
can then be attributed to specific physical parameters derived 
from the prior network/receiver training. 

 

In order to enable robust and cost-effective “self-managed” 
operation, it would be desirable for the network itself to agilely 
monitor the physical impairments and the quality of the data 
signals, and automatically diagnose and feedback information 
to control the network [7-8].  As we know, artificial neural 
networks are information-processing systems that learn from 
observations and generalize by abstraction, so are attractive 
alternative to conventional methods such as numerical 
modeling methods, analytical methods, or empirical modeling 
solutions. ANNs have the ability to model multi-dimensional 
nonlinear relationships and are simple to use. Furthermore, the 
neural network approach is generic (i.e., the same modeling 
technique can be re-used for passive/active devices/ systems) 
and the response is fast. The ANN approach has gained much 
attention as a powerful tool in a number of areas such as 
pattern recognition, speech processing, control, and bio-
medical engineering etc. Now-a-days, researchers are showing 
keen interest in implementing these neural networks in optical 
performance monitoring. [9-10] has demonstrated use of a 
neural network approach to “train” receivers in an optical 
network to distinguish between resultant shapes of the data 
channel’s eye diagrams and the degrading effects of OSNR, 
CD, PMD and fiber nonlinearity. For the implementation of 
neural network on OPM, the coefficients of the algorithm are 
iteratively derived prior to live traffic being sent through the 
network. A similar technique has also been used for time 
misalignment monitoring in return-to-zero differential 
quadrature phase shift keying (RZ-DQPSK) transmitters [11-
12], which extends the applications of our ANN approach to a 
broader sense of OPM. Neural Network based solutions are 
very accurate (98% of optimal throughput). It is found that 
while the human generated heuristics fail to find a solution in 
approximately 30% of cases, the best NN fails only in 4.9% of 
cases. Moreover, the mapping between high dimensional 
spaces is achieved with small number of weights and hidden 
nodes. The NN’s perform well on Grade of service data even if 
they are trained on non-Grade of service data indicating that 
they are flexible enough to deal with unexpected situations. 

 

1.1. Performance monitoring using radial basis function (RBF) 
equalizer: 

A radial basis function (RBF) equalizer is introduced in 
[13-14] for mitigation of Polarization mode dispersion optical 
communications systems. The presented equalizer can 
effectively adapt to the characteristics of the optical channel, 
which are nonlinear, time-varying and corrupted by non-
Gaussian and signal dependent noises. A recursive learning 
algorithm is derived to track channel changes and design the 

RBF equalizer by incorporating the prior information about the 
channel distortion. An all order PMD channel is simulated with 
transmission of 10Gbit/s RZ Gaussian pulses with 50 ps 
FWHM is simulated for experimental verification. The mean 
DGD of the channel is 57 ps. Performance of the equalizer is 
evaluated by bit error rate (BER) that it can achieve.  

1.2  Performance monitoring using multilayer perceptron: 

As we know, ANN consists of multiple layers of processing 
elements called neurons. Each neuron is connected to other 
neurons in neighboring layers by varying coefficients that 
represent the strengths of these connections. ANNs learn the 
relationships among sets of input-output data that are 
characteristics of the device or system under consideration. 
After the input vectors are presented to the input neurons and 
output vectors are computed, the ANN outputs are compared to 
the desired outputs, and errors are calculated. Error derivatives 
are then calculated and summed for each weight until all of the 
training sets have been presented to the network. The error 
derivatives are used to update the weights for the neurons, and 
training continues until the errors reach prescribed low values 
[15-16]. The three layer perceptron neural network with feed-
forward architecture is used in [17] with 4-input parameters, 4-
output parameters and one hidden layer with twelve neurons. 
The number of hidden neurons is optimized via adaptive 
processes, which add/delete neurons during training The input 
parameters include  Q-factor(the difference of the mean upper 
and lower levels divided by the sum of the upper and lower 
level standard deviations), eye closure(ratio of the outer eye 
height to the inner eye height) and root-mean-square (RMS) 
jitter(the standard deviation of the time data calculated in a 
narrow window surrounding the crossing amplitude) and 
crossing-amplitude which are derived from eye diagram. The 
impairments OSNR, CD, PMD, DGD (differential group 
delay) and fiber nonlinearity are calculated across output. The 
ANN is simulated using Neuro-modeller software package 
developed by [18]. The concept is verified via simulation in 40 
Gb/s RZ-OOK and RZ-DPSK systems. The conjugate gradient 
method is used for training. The simulated fiber channel 
includes a laser with a full width at half maximum (FWHM) 
line-width of 10 MHz; a 40 Gb/s logic source; a single-arm, 
Mach-Zehnder modulator (MZM) biased at the quadrature 
point with driving voltage for generating OOK and at 
minimum point with driving voltage for generating DPSK, 
where is the half-wave voltage of the MZM, followed by 
another MZM for RZ pulse carving. Impairments are added 
through emulators in the link and then the signals are detected 
by using a single photodiode for RZ-OOK and a balanced 
receiver following a delay line interferometer (DLI) for RZ-
DPSK, where the eye diagrams are recorded and the eye 
diagram parameters are extracted. The testing and ANN-
modeled data are compared. The measured average errors for 
OSNR, CD and DGD are 0.58 dB, 4.68 ps/nm, and 1.53 ps, 
respectively for 40 Gb/s RZ-OOK, and are 0.77 dB, 4.74 
ps/nm, and 0.92 ps, respectively for 40 Gb/s RZ-DPSK. 
Adding accumulated nonlinearity is also a challenge in terms 
of the neural network approach, due to its specific signatures 
on the eye diagrams. For calculating on-linearity component 
the four outputs are input optical power, OSNR, CD, and PMD, 
and the eight inputs include Q-factor, eye-closure, RMS jitter, 
‘0’level crossing amplitude, mean of ‘1’s and ‘0’s, standard 
derivation (SD) of ‘1’s and ‘0’s. The testing and ANN-modeled 
data for optical power, OSNR, CD, and DGD shows the 
average errors for optical power, OSNR, CD and DGD as 0.46 
dB, 1.45 dB, 3.98 ps/nm, and 0.65 ps, respectively. The 
application of neural networks for identification of impairment 
causing changes from a baseline and time misalignment 
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identification in RZ-DQPSK transmitters is also discussed. 
Artificial neural network (ANN) model used to simultaneously 
identify three separate impairments that can degrade optical 
channels, namely optical signal-to-noise ratio (OSNR), 
chromatic dispersion (CD), and polarization-mode dispersion 
(PMD) is demonstrated by [19]. . The neural networks are 
trained with parameters derived from eye diagrams to create 
models that can predict levels of concurrent impairments.. 

A similar technique for optical performance monitoring by 
simultaneously identifying optical signal-to-noise ratio 
(OSNR), chromatic dispersion (CD), and polarization mode 
dispersion (PMD) using artificial neural networks trained with 
parameters derived from delay-tap asynchronous sampling is 
represented by [20]. An optical channel operating at 10 Gb/s 
and using non-return-to-zero, on-off keying (NRZ-OOK) is 
simulated for the same. The ANN architecture used in this 
work is a feed-forward, three-layer perceptron structure 
consisting of an input layer, a hidden layer, and an output layer. 
An asynchronous sampling based on a two-tap delay line, 
where each sample point is comprised of two measurements 
separated by a specific period corresponding to the length of 
the delay is done [21-22]. By creating a scatter plot of the 
measured pairs, it is observed that delay lengths of less than 
half of the bit period (B/2) represented the power evolution 
within each bit. Furthermore, plots making use of delays of B/2 
highlight distortion effects. These impairments produce distinct 
features. To capture the behavior of these plots, the plot is 
divided into four quadrants, Q1-Q4. It is observed that 
quadrant 4 it contains data that is the mirror image of quadrant 
2.So quadrant 4 is not used. For quadrants 1 and 3, the means 
and standard deviations of the magnitudes ( r1,σ r1, r3,σ r3 ) 
are calculated and for quadrant 2, the means and standard 
deviations of the x’s and y’s  are calculated separately. The 
parameter similar to the Q-factor, which is define as Q31 = (r3 
− r1) /(σ r1 +σ r3)  is also used. The simulated fiber channel 
included a laser with a center wavelength of1550 nm and a 
FWHM line-width of 10 MHz; a 10 Gb/s logic source; a 
single-arm, Mach-Zehnder optical modulator biased at the 
quadrature point with a Vπ drive voltage; and a fourth-order 
Bessel-Thomson filter. The ANN has seven inputs (r1, σr1, r3, 
σr3, x2, y2, Q31), three outputs (OSNR, CD, and DGD), and 
28 hidden neurons. [23] compared both the techniques of 
optical performance monitoring. When parameters from delay-
tap plots were used, the root-mean-square (RMS) errors were 
0.919 dB for OSNR, 6.368 ps/nm for CD, and 1.479 ps for 
DGD; when the parameters from eye diagrams were used, the 
RMS errors were 0.866 dB for OSNR, 14.642 ps/nm for CD, 
and 2.479 ps for DGD. In this particular case, results were 
slightly better when using parameters from the delay-tap plots.  

A similar Low Cost Multi-Impairment Monitoring 
Technique for 43 Gb/s and 86 Gb/s DP-DPSK system is 
presented by [24]. The system is implemented using delay tap 
asynchronous sampling. The signal phase diagram patterns for 
the 43 Gb/s DPSK and 86 Gb/s DP-DPSK signals are obtained. 
The histograms of the sample vector norm, R and vector angle, 
Ф are calculated. Processing of the phase diagram pattern 
together with the vector norm and angle histograms provide 9 
statistical parameters which are used to identify the 
impairments levels in the link. In order to estimate the CD, 
OSNR and DGD, the 9 statistical parameters derived from the 
signal phase diagram, feed an ANN which consists of a feed-
forward 3 layer perceptron structure with an input layer of 9 
neurons, a hidden layer of 100 neurons and an output layer of 3 
neurons and optimum results are achieved. Performance 
monitoring of quadrature phase-shift keying (QPSK) data 
channels by simultaneously identifying optical signal-to-noise 

ratio (OSNR), chromatic dispersion (CD), and polarization-
mode dispersion (PMD) using neural networks trained with 
parameters derived from asynchronous constellation diagrams 
is represented in [25]. The testing data is obtained from a 40 
Gb/s RZ-QPSK system. The root-mean-square (RMS) errors of 
0.77 dB for OSNR, 18.71 ps/nm for CD, and 1.17 ps for DGD 
is obtained. The conjugate gradient method is used as learning 
algorithm as it is nice compromise in terms of memory and 
implementation effort, since the descent direction runs along 
the conjugate direction, which can be determined without 
matrix computations [15]. There are no parameters like Q-
factor, closure, jitter, and crossing amplitude available for 
constellation diagrams. Thus, as in case of delay-tap plots, new 
parameters are defined by dividing it in four quadrants that are 
used to calculate the behavior of asynchronous constellation 
diagrams. Quadrants 2 and 4 are not used in this particular 
application. For quadrants 1 and 3, the means and standard 
deviations of the magnitudes (r1, σr1, r3, σr3), are calculated 
because constellation diagrams contain data that are roughly 
symmetric about the 45° axis. Additionally, calculate the 
maximum and minimum values of the y’s at the x = 0 axis 
(ymax and ymin), since these values vary with OSNR and 
DGD, and tend not to be symmetrical with CD. If additional 
impairments were to be included in the monitor, then the 
parameters from quadrants 2 and 4 would probably be required. 
The configuration used in the simulation includes RZ-DQPSK 
transmitter consisted of a continuous wave (CW) laser 
operating at 1550 nm with a line width of 100 KHz, a parallel-
type DQPSK modulator, which was driven by two 20 Gbps 
non-return to zero (NRZ) 215-1 pseudo-random binary 
sequences (PRBS) and a Mach-Zehnder modulator (MZM) for 
pulse carving.. The generated RZ-DQPSK signal was then sent 
to a CD emulator, followed by a DGD (i.e. first order PMD) 
emulator. The output was sent to an Erbium-doped fiber 
amplifier (EDFA) with a variable optical attenuator in front to 
adjust the received OSNR. The signal was then filtered by a 
bandpass filter (BPF) with 0.8 nm bandwidth, and sent to the 
receiver, where the constellation diagrams and parameters were 
extracted. The receiver consisted of two out-of-phase delay-
line-interferometers (DLI) followed by two balanced photo-
receivers (BPDs) and the received I and Q signals were finally 
sampled with analog to digital converters (ADCs) 
asynchronously, the sampling rate of which can be much lower 
than the data rate. The outputs of ADCs formed the coordinates 
of the data in the complex plane for constructing the 
constellation diagrams, such that all the received samples could 
be plotted in one I/Q plane asynchronously during the offline 
processing. The ANN consisted of seven 
inputs (𝑟1̅, 𝜎𝑟1̅̅ ̅̅ , 𝑟2̅, 𝜎𝑟2̅̅ ̅̅ , 𝑦𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 , 𝑄31) , three outputs (OSNR, 
CD, and DGD), and 28 hidden neurons. 

II. CONCLUSION 

Conceptually, two approaches are possible for creating such 
NN-based control systems. First, when no algorithmic solution 
exists one can use empirical data for training a drawback here 
is the need for large training data sets. Second, if an 
algorithmic solution exists but is too complex to be 
implementable under practical restrictions like execution time 
or memory limitation constraints, a NN can replace the 
algorithm. In such a case, training data is not a problem since it 
can be easily created off-line by the algorithm. The problem of 
optimization of a meshed telecommunication network is a 
control problem of the latter type. It is a constrained integer 
optimization task with a nonlinear target function. It can have 
tens or even hundreds of input variables and an even larger 
number of output control parameters. Interestingly, it can be 
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solved “optimally” with the use of classical linear 
programming (LP) techniques [19], but such an approach is 
several orders of magnitude too slow for real-time 
implementation for large networks, the task could even require 
hours to complete. Thus such algorithmic techniques are 
unsuitable for dynamic reconfiguration of such a 
telecommunications network, where the response time required 
can be as low as 60 ms. Although numerous techniques are 
proposed and implemented for optical performance monitoring, 
the application of neural network in the same still have a large 
potential to be explored. 
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