Cycle C_3 Related one point union Product cordial graphs

Mukund Bapat

Abstract: In this paper we discuss one point union graphs obtained from cycle related graphs. We show that $G^{(k)}$ is product cordial where $G = FL(C_n)$, bull of C_n, crown of C_n, double crown of C_n, C_n^+, tail($C_3, 2P_2$), C_3 attached with 2 pendent edges attached at adjacent vertices and show them to be product cordial under certain conditions.

Key words: labeling, cordial, product, wheel, crown. tail graph.

Subject Classification: 05C78

Introduction: The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [8], A dynamic survey of graph labeling by J. Gallian [7] and Douglas West [8]. I. Cahit introduced the concept of cordial labeling [6]. There are variety of cordial labeling available in labeling of graphs. Sundaram, Ponraj, and Somasundaram [9] introduced the notion of product cordial labeling. A product cordial labeling of a graph G with vertex set V is a function f from V to $\{0, 1\}$ such that if each edge uv is assigned the label $f(u)f(v)$, the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1. A graph with a product cordial labeling is called a product cordial graph.

A lot of work is done in this type of labeling so far. One interested in survey may refer Dynamic survey in Graph labeling by J. Gallian. We mention a very short part of it. Sundaram, Ponraj, and Somasundaram have shown that trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; $PmUPn$; $CnUPn$; $PmUK1,n$; $WmUFn$ (Fn is the fan $Pn+K1$); $K1,mUK1,n$; $WmU K1,n$; $Wm U Pn$; $Wm UCn$; the total graph of Pn the total graph of Pn has vertex set $V(Pn)UE(Pn)$ with two vertices adjacent whenever they are neighbors in Pn); Cn if and only if n is odd; $C_n^{(0)}$, the one-point union of t copies of C_n, provided t is even or both t and n are even; $K2+mK1$ if and only if m is odd; C_nUPa if and only if $m+n$ is odd; $K_{m,n}$ UPs if $s > mn$; $Cn+2UK1,n$; $KnUKn$ ($n−1)/2$ when n is odd; $KnUKn−1,n/2$ when n is even; and $P2$ n if and only if n is odd. They also prove that $K_{m,n}$ ($m, n > 2$), $Fm XPn$ ($m, n > 2$) and wheels are not product cordial and if a (p, q)-graph is product cordial graph, then $q = 6(p−1)(p + 1)/4 + 1$. In this paper we show that one point union of $G = FL(C_n)$, bull of C_n, crown of C_n, double crown of C_n, C_n^+, tail($C_3, 2P_2$), C_3 attached with 2 pendent edges attached at adjacent vertices and show them to be product cordial under certain conditions.

3. Fusion of vertex. Let G be a (p, q) graph. Let $u\neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has p-vertices and at least q-1 edges. If $ueG1$ and $veG2$, where $G1$ is (p_1,q_1) and $G2$ is (p_2,q_2) graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has $p_1+p_2−1$ vertices and $q_1 + q_2$ edges. Sometimes this is referred as “u is identified with”$. The concept is well elaborated in D. West [10].

3.1 Crown graph. It is $C_n OK2$. At each vertex of cycle a n edge was attached. We develop the concept further to obtain crown for any graph. Thus crown (G) is a graph $G OK2$. It has a pendent edge attached to each of it’s vertex. If G is a (p,q) graph then crown (G) has $q+p$ edges and $2p$ vertices.

3.3 Flag of a graph G denoted by $FL(G)$ is obtained by taking a graph $G\rightarrow G(p,q)$. At suitable vertex of G attach a pendent edge. It has $p+1$ vertices and $q+1$ edges.

3.4 $G^{(k)}$ it is one point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If
G is a (p, q) graph then \(|V(G(k))| = k(p-1)+1|E(G)|= kq \\
3.5 A bull graph \(\text{bull}(G) \) was initially defined for a \(C_3 \)-bull. It has a copy of \(G \) with an pendant edge each fused with any two adjacent vertices of \(G \). For \(G \) is a (p,q) graph, \(\text{bull}(G) \) has \(p+2 \) vertices and \(q+2 \) edges.

3.6 A tail graph (also called as antenna graph) is obtained by fusing a path \(p_k \) to some vertex of \(G \). This is denoted by \(\text{tail}(G, P_k) \). If there are \(t \) number of tails of equal length say \((k-1)\) then it is denoted by \(\text{tail}(G, tp_k) \). If \(G \) is a (p,q) graph and a tail \(P_k \) is attached to it then \(\text{tail}(G, P_k) \) has \(p+k-1 \) vertices and \(q+k-1 \) edges.

Main Results:

4.1 Theorem 1. Let \(G' = \text{FL}(C_3) \). Then \(G = G'(k) \) is product cordial iff \(k \) is congruent to \((2 \mod 4)\).

Proof: There are different structures possible on \(G \) depending on the vertex of \(G' \) (vertex common to all copies) used to obtain \(G \). From fig 4.1 it follows that there are three structures possible on \(G \) by taking one point union on vertex a, b or at c. The point of fusion is 'x'.

In structure 1 type A is used and the vertex common to all graphs is \(x \) whose label is ‘1’. In structure 2 type B is used and the vertex common to all graphs is \(x \) whose label is ‘1’. In structure 3 type B is used and the vertex common to all graphs is \(x \) whose label is ‘1’. In all structures the label number distribution is \(v(0,1) = (3x, 4x+1); e(0,1) = (4x,4x) \) for \(G = (G')^{2x} \).

Theorem 2. Let \(G' = \text{bull}(C_3) \). Then \(G = G'(k) \) is product cordial iff \(k \) is congruent to \((2 \mod 4)\).

Proof: One can see that there are three possible non–isomorphic structures on the graph \(G \). We can take one point union on any of the three vertices as shown in figure 4.5. Define \(f: V(G) \rightarrow (0,1) \) as follows. Using \(f \) we get labeled copies as shown in Type A, Type B, type C, type D. For \(k = 1 \) and \(k = 2 \) figures above explains the matter. When \(k = 2x \) we have to repeatedly fuse respective type of labeling for \(x \) times at
The label number distribution is \(v_1(0,1) = (4x, 4x+1); e_1(0,1) = (5x, 5x+3) \). To obtain the labeled copy of \(G^{(2x+1)} \) first obtain labeled copy of \(G^{(2x)} \). With this fuse type A label at vertex \(d \) on it with vertex \(d \) of \(G^{(2x)} \), (obtained from type C label) fuse type A label at vertex \(y \) on it with vertex \(y \) of \(G^{(2x)} \), (obtained from type D label). Thus we get a labeled copy of \(G^{(2x+1)} \). The label number distribution is \(v_1(0,1) = (4x+3, 4x+3); e_1(0,1) = (5x+5, 5x+5) \). Thus the graph is having product cordial label.

Theorem 4.3 One point union of \(k \) copies of \(C_s \), \(G = (C_s)^{(k)} \) is product cordial graph for all \(k \) provided the point common to all copies is the pendent vertex and common point is degree three then \(k \) is equal to 1 or even number only.

Proof: From figure it follows that on \(C_s^{(k)} \) there are only two structures possible up to isomorphism

Define \(f: V(G) \to \{0,1\} \) as follows. Using \(f \) we get labeled copies of \(G^{(2x)} \) as shown in fig 4.11 and 4.12, fig 4.13. When \(k = 1 \) use type C label. S structure 1. The common point is vertex \('b' \). First obtain labeled copy of \(G \) for \(k = 2x \). This is done by fusing type B label at point \(b \) for \(x \) times. The resultant graph is \(C_s^{(2x)} \) and label number distribution is \(v_1(0,1) = (5x, 5x+1); e_1(0,1) = (6x, 6x) \). To obtain a labeled copy for \(k = 2x+1 \) first obtain labeled copy for \(k = 2x \). Append it with type C label at vertex \(b \). The resultant graph is \(C_s^{(2x+1)} \) and label number distribution is \(v_1(0,1) = (5x+3, 5x+3); e_1(0,1) = (6x+3, 6x+3) \).

If \(k \) is odd number greater than 1, if we have to take union point on \(G \) as pendent vertex then if it’s label is ‘0’ then it produces \(e_1(0) \) greater than 2 by \(e_1(1) \). If we label the common vertex as ‘1’ then also condition on edges is not satisfied. When \(k = 2x \) fuse the type A labeling with type A label at point ‘a’ for \(x \) times to get \(G \). The resultant graph is \(C_s^{(2x)} \) and label number distribution is \(v_1(0,1) = (5x, 5x+1); e_1(0,1) = (6x, 6x) \). That completes the proof.

Theorem 4.4 Let \(G' \) be \(\text{Tail}(C_s, 2P_2) \) obtained from attaching two pendent edges at a vertex of \(C_s \) then \(G = (G')^{(k)} \) is product cordial for all \(k \) and all pairwise non-isomorphic structures obtained by taking different vertices on \(G' \) as common point.

Proof: From fig 4.13 it is clear that we can take one point union at five points but only at three points vertex \(a \), vertex \(b \), vertex \(c \) results in pairwise non-isomorphic structures.
Define \(f: V(G) \rightarrow \{0,1\} \) as follows. Using \(f \) we get labeled copies of \(G'^{(2)} \) as Type A, Type B, Type C and when \(k = 1 \) we have Type D label. To obtain a labeled copy of \(G'^{(k)} \) we first obtain a labeled copy of \(G'^{(2^k)} \). In structure 1 ‘a’ is the common point to all copies of \(G' \). We fuse Type A label repeatedly for \((x-1)\) times to obtain a labeled copy of \(G'^{(2^x)} \). In structure 2 ‘b’ is the common point to all copies of \(G' \) we fuse Type C label repeatedly for \((x-1)\) times to obtain a labeled copy of \(G'^{(2^x)} \). In structure 3 ‘c’ is the common point to all copies of \(G' \) we fuse Type B label repeatedly for \((x-1)\) times to obtain a labeled copy of \(G'^{(2^x)} \). To obtain labeled copy of \(G' \) we fuse Type D label at respective point on it (vertex a for structure 1 or vertex b for structure 2 or vertex c for structure 3) with \(G' \). We use type B label when \(k \) is of type \(2x \). For all three structures we use Type A label on \(G \) when \(k \) is of type \(2x+1 \) for \(x = 0,1,2 \). We use type B label when \(k \) is of type \(2x \), \(x = 1,2 \). In all the three structures the label number distribution is \(v(0,1) = (3+6x,4+6x) \); \(e(0,1) = (4+7x,3+7x) \) for \(k = 2x \). And when \(k = 2x+1 \) we have \(v(0,1) = (6x,6x+1) \); \(e(0,1) = (7x,7x) \).

This shows that the graph is product cordial. Also the function \(f \) defined is not vertex sensitive in the sense that the same function \(f \) works for all structures.

Theorem 4.5 Let \(G' \) be a graph obtained from cycle \(C_3 \) by attaching two pendant vertices each at two vertices of \(C_3 \). Let \(G \) be the one point union of \(G' \) is given by \(G = G'^{(k)} \). Then \(G \) is product cordial.

Proof: There are three possible pair wise non-isomorphic structures on \(G' \). Structure 1 is obtained if vertex a is the common point on \(G \). Structure 2 is obtained if vertex b is the common point on \(G \). Structure 3 is obtained if vertex a is the common point on \(G \). This is shown in figure 4.18. Define \(f: V(G) \rightarrow \{0,1\} \) as follows. On using \(f \) we get labeled copies of \(G' \) as Type A and Type B. Both are product cordial. For all three structures we use Type A label on \(G \) when \(k \) is of type \(2x+1 \) for \(x = 0,1,2 \). We use type B label when \(k \) is of type \(2x \), \(x = 1,2 \). In all the three structures the label number distribution is \(v(0,1) = (3+6x,4+6x) \); \(e(0,1) = (4+7x,3+7x) \) for \(k = 2x \). And when \(k = 2x+1 \) we have \(v(0,1) = (6x,6x+1) \); \(e(0,1) = (7x,7x) \).
Conclusions: In this paper one point union of C_3 related graphs are discussed and are shown to be product cordial. We show that

1) $G' = FL(C_3)$. Then $G = G'(k)$ is product cordial iff k is congruent to $(2 \mod 4)$.
2) $G' = bull(C_3)$. Then $G = G'(k)$ is product cordial iff k is congruent to $(2 \mod 4)$.
3) One point union of k copies of C_3^*, $G = (C_3^*)^k$ is product cordial graph for all k provided the point common to all copies is the pendent vertex and if common point is degree three then k is equal to 1 or even number only.

4) Let G' be $Tail(C_3, 2P_2)$ obtained from attaching two pendent edges at a vertex of C_3, then $G = (G')^k$ is product cordial for all k and all pairwise non-isomorphic structures obtained by taking different vertices on G' as common point.

5) G' be a graph obtained from cycle C_3 by fusing two pendent vertices each at each vertex of C_3. $G = G'^{(k)}$ is product cordial on all structures.

Thus it is interesting to study the cycles with pendent edges fused at some or all vertices of it for product cordiality.

References:

[2] Bapat M.V. Some vertex prime graphs and a new type of graph labelling Vol 47 part 1 yr 2017 pg 23-29 IJMTT

[8] Harary, Graph Theory, Narosa publishing, New Delhi

Bapat Mukund V.

At and Post: Hindale, Tal. : Devgad, Dist.: Sindhudurg, Maharashtra. India 416630.