A Note On Cordial Labeling of Cycle Related Mixed Double Path Union

Mukund Bapat

1. Abstract: Let G_1 and G_2 be two graphs. On alternate vertices of P_m both G_1 and G_2 are fused. Resultant graph is mixed double path union on G_1 and G_2. We study it for cordial labeling by taking case 1: $G_1 = C_3$ and $G_2 = \text{flag of } C_3$. Case 2: $G_1 = C_4$ and $G_2 = \text{flag of } C_4$. Case 3: $G_1 = C_5$ and $G_2 = \text{flag of } C_5$. Case 4: $G_1 = C_4$ and $G_2 = \text{flag of } C_3$. All these structures are observed to be cordial.

Key words: cordial, labeling, double path union, cycle, mixed path

Subject Classification: 05C78

1. Introduction. The graphs we consider are simple, finite and connected. For terminology and definitions we depend on Harary[5], Clark and Holton[4] and Dynamic survey of graph labeling[7]. I. Cahit introduced concept of cordial [3] labeling. $f: V(G) \rightarrow \{0,1\}$ be a function. From this label of any edge (uv) is given by $|f(u) - f(v)|$. Further number of vertices labeled with 0 i.e $v_0(0)$ and the number of vertices labeled with 1 i.e $v_0(1)$ differ at most by one. Similarly number of edges labeled with 0 i.e $e_0(0)$ and number of edges labeled with 1 i.e $e_0(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that: every tree is cordial; K_n is cordial if and only if $n \leq 3$; $K_{m,n}$ is cordial for all m and n; the friendship graph C_3^t (i.e., the one-point union of t copies of C_3) is cordial if and only if t is not congruent to 2 (mod 4); all fans are cordial; the wheel W_n is cordial if and only if n is not congruent to 3 (mod 4). A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [7]. We use the convention that $v_i(0,1) = (a,b)$ to indicate the number of vertices labeled with 0 are a in number and that number of vertices labeled with 1 are b. Further $e_i(0,1) = (x,y)$ we mean the number of edges labeled with 0 are x and number of edges labeled with 1 are y. The graph whose cordial labeling is available is called as cordial graph.

A mixed double path union on G_1 and G_2 is denoted by $P_m(G_1, G_2)$. We take G_1 as C_k and G_2 as $\text{flag of } C_k$, $k = 3, 4, 5$.

3. Definitions: Fusion of vertex. Let G be a (p,q) graph. let $u \neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has $p-1$ vertices and at least $q-1$ edges. If ucG_1 and vcG_2, where G_1 is (p_1,q_1) and G_2 is (p_2,q_2) graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has $p_1 + p_2 - 1$ vertices and $q_1 + q_2$ edges. Sometimes this is referred as u is identified with v.

Path union of G i.e. $P_m(G)$ is obtained by taking a path P_m and m copies of graph G. Fuse a copy each of G at every vertex of path at given fixed point on G. It has mp vertices and $mq + m - 1$ edges, where G is a (p,q) graph. If we change the vertex on G that is fused with vertex of P_m then we generally get a path union non-isomorphic to earlier structure.

Flag of a graph G denoted by $FL(G)$ is obtained by taking a graph $G = G(p,q)$. At suitable vertex of G attach a pendent edge. It has $p + 1$ vertices and $q + 1$ edges.
Double path union on $G_1 = (p_1,q_1)$ and $G_2 = (p_2,q_2)$ graphs. It is denoted by $P_m(G_1,G_2)$. At each vertex of a path a copy of G_1 and a copy of G_2 is fused at same fix vertex of G_1 and G_2. It has $m(p_1+p_2)$ vertices and $m(q_1+q_2)+(m-1)$ edges.

4. Main Results:

Theorem 1. Mixed double path union $G = P_m(G_1,G_2)$ is cordial where $G_1 = C_3$ and $G_2 = \text{flag}(C_3)$.

Proof: First we fuse C_3 and $\text{flag}(C_3)$ to obtain the structure as follows. This structure is actually $P_1(G_1,G_2)$ and is fused at each vertex of path P_m at vertex a on it.

Define a function $f: V(G) \rightarrow \{0,1\}$. It produces labeled copy as in figure 4.1 below.

![Figure 4.1](image1.png)

Fig 4.1 $G = P_1(G_1,G_2)$ A labeled copy, Vertex a is fusion vertex on G. $v_f(0,1) = (3,3)$, $e_f(0,1) = 3,4$)

Note that label of each vertex on path P_m is 0.

Label distribution on vertices is $v_f(0,1) = (3m,3m)$ for all m. For edges we have $e_f(0,1) = (3+4(m-1), 4+4(m-1))$

Thus the graph is cordial.

Theorem 2. Mixed double path union $G = P_m(G_1,G_2)$ is cordial where $G_1 = C_4$ and $G_2 = \text{flag}(C_4)$.

Proof: First we fuse C_4 and $\text{flag}(C_4)$ to obtain the structure as follows. This structure is actually $P_1(G_1,G_2)$ and is fused at each vertex of path P_m at vertex a on it.

Define a function $f: V(G) \rightarrow \{0,1\}$. It produces labeled copy as in figure 4.3 below.

![Figure 4.2](image2.png)

Fig 4.2 labeled copy of $G = P_m(G_1,G_2)$
Note that label of each vertex on path P_m is 0.

Label distribution on vertices is $v_f(0,1) = (4m,4m)$ for all m. For edges we have $e_f(0,1) = (4+5(m-1), 4+5(m-1))$

Thus the graph is cordial.

Theorem 3. Mixed double path union $G = P_m(G_1,G_2)$ is cordial where $G_1 = C_5$ and $G_2 = \text{flag}(C_5)$.

Proof: First we fuse C_4 and $\text{flag}(C_4)$ to obtain the structure as follows. This structure is actually $P_1(G_1,G_2)$ and is fused at each vertex of path P_m at vertex a on it.

Define a function f: $V(G) \to \{0,1\}$. It produces labeled copy as in figure 4.5 below.

![Diagram 4.3 labeled copy of $G = P_m(C_4,\text{flag}(C_4))$](image1)

$v_f(0,1) = (4,4)$, $e_f(0,1) = (4,5)$

![Diagram 4.4 labeled copy of $G = P_m(C_5,\text{flag}(C_5))$](image2)

$v_f(0,1) = (5,5)$, $e_f(0,1) = (5,6)$
Note that label of each vertex on path P_m is 0.

Label distribution on vertices is $v_f(0,1) = (5m,5m)$ for all m. For edges we have $e_f(0,1) = (5+6(m-1), 5+6(m-1))$

Thus the graph is cordial

Theorem 4. Mixed double path union $G = P_m(G_1,G_2)$ is cordial where $G_1 = C_4$ and $G_2 = \text{flag}(C_3)$.

Proof: First we fuse C_4 and $\text{flag}(C_3)$ to obtain the structure as follows. This structure is actually $P_1(G_1,G_2)$ and is fused at each vertex of path P_m at vertex a on it.

Define a function $f: V(G) \to \{0,1\}$. It produces labeled copy as in figure 4.6 below.

We take a path $P_m = (v_1,v_2,\ldots,v_m)$. At vertex v_i we fuse type A label if $i \equiv 0,1 \pmod{4}$ and type B label if $i \equiv 2,3 \pmod{4}$. The fusion is taken at point a on both type of labels. The label number distribution is $v_f(0,1) = (4+14x,3+14x)$ if m is of type $4x+1$, $x = 0,1,2,..$
\(v_f(0,1) = (7x,7x) \) if \(m \) is of type \(2x \), \(x = 1, 2, 3.. \)

\(v_f(0,1) = (10+14x,11+14x) \) if \(m \) is of type \(3+4x \), \(x = 0, 1, 2, 3.. \)

\(v_f(0,1) = (7x,7x) \) if \(m \) is of type \(2x \), \(x = 1, 2, 3.. \)

On edges we have \(e_f(0,1) = (4+18x,4+18x) \) if \(m \) is of type \(4x+1 \), \(x = 0, 1, 2, 3.. \)

\(e_f(0,1) = (8+18x,9+18x) \) if \(m \) is of type \(4x+2 \), \(x = 0, 1, 2, 3.. \)

\(e_f(0,1) = (13+18x,13+18x) \) if \(m \) is of type \(4x+3 \), \(x = 0, 1, 2, 3.. \)

\(e_f(0,1) = (17+18x,18+18x) \) if \(m \) is of type \(4x \), \(x = 1, 2, 3.. \)

Thus the graph is cordial.

Conclusions

In this paper we obtain path union on mixed graph. This family of graph is constructed by fusing copy each of \(G_1 \) and \(G_2 \) at fixed vertex of path vertex. This graph is denoted by \(P_m(G_1,G_2) \).

We have proved that
1) Mixed double path union \(G = P_m(G_1,G_2) \) is cordial where \(G_1 = C_3 \) and \(G_2 = \text{flag}(C_3) \).
2) Mixed double path union \(G = P_m(G_1,G_2) \) is cordial where \(G_1 = C_4 \) and \(G_2 = \text{flag}(C_4) \).
3) Mixed double path union \(G = P_m(G_1,G_2) \) is cordial where \(G_1 = C_5 \) and \(G_2 = \text{flag}(C_5) \).
4) Mixed double path union \(G = P_m(G_1,G_2) \) is cordial where \(G_1 = C_4 \) and \(G_2 = \text{flag}(C_3) \).

Further it is necessary to investigate this type of families for general cases such as \(G_1 \) and \(G_2 \) are \(C_n \) etc.

References:

\(^1\) Mukund V. Bapat, Hindale, Tal: Devgad, Sindhudurg
Maharashtra, India 416630