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Abstract: A novel strategy for taking in the cyclic substance of 

stochastic time arrangement: the profound time-developing neural 

system. The DTGNN consolidates administered and unsupervised 

strategies in various levels of learning for an upgraded execution. It 

was utilized by a multiscale learning structure to group cyclic time 

arrangement (CTS), in which the dynamic substance of the time 

arrangement are protected in a proficient way. This paper 

recommends a precise methodology for finding the outline 

parameter of the characterization strategy for a one versus-different 

class application. A novel approval technique is additionally 

proposed for assessing the auxiliary hazard, both in a quantitative 

and a subjective way. The impact of the DTGNN on the execution of 

the classifier is measurably approved through the rehashed irregular 

sub inspecting utilizing distinctive arrangements of CTS, from 

various therapeutic applications. In this paper Respiration dataset 

and ECG signals are tested and out of these signals average 

respiration rate 18.25 is achieved.  
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I. INTRODUCTION 

Time series classification has been a topic of study over decades. 

Several supervised and unsupervised methods have been suggested 

with which to learn the dynamic contents of time series. Dynamic time 

warping, hidden Markov model (HMM), and artificial neural network 

are three well known methods extensively employed in many contexts, 

e.g., automatic speech recognition [1]–[3]. Nevertheless, the 

development of a classification method sophisticated for the cyclic 

time series (CTS) had been overlooked in the model level, even 

though a number of methods were subjectively applied to the CTS [4]–

[6]. A CTS is described as a nonstationary time series exhibiting 

repetitive characteristics. Unlike periodic time series, the cyclic 

duration of a CTS can be inconsistent, but repetitive patterns are 

observed. This cyclic behavior attributes special features to the time 

series that can be exploited by a classifier to enhance its classification 

performance. The importance of developing a sophisticated method for 

the CTS classification is realized when considering that a recording of 

many natural phenomena and biological activities resembles a CTS. 

As an example, phonocardiogram (PCG) is a recording of the sounds 

emanating from the mechanical activity of a heart. This is considered 

as a typical CTS where the cycle duration is affected by a number of 

physiological activities, e.g., respiration. Several studies reported the 

importance of having a reliable decision support system for screening 

pediatric cardiac disease in primary healthcare centers, as the 

screening accuracy is still considerably low [7], [8]. The main 

challenge for developing a decision support system for screening 

cardiac disease is a reliable method for processing and classifying the 

PCG signal. Such a need is seen in different medical applications, in 

which the biological signal is cyclic, and the classification of the 

signal can be important, and sometimes critical to patient monitoring, 

as is the case, for instance, with the classification of the patterns 

associated with electroencephalograms (EEGs). Biological signals 

with cyclic characteristics often show nonstationary behavior not only 

within the cycles, but over them in the cycle-to-cycle variation. This 

associates a high level of complexity with the signal that makes the 

development of the classifier, a big challenge. Unlike many industrial 

applications, the origin of the complexities in the majority of the 

biological signals has yet to be fully understood. As a result, the 

stochastic models can provide a better learning than deterministic 

ones, especially when it comes with a general model for diverse 

medical applications. Such a model needs to be capable of coping with 

the complexities of the signals. 

 

II. DEEP NEURAL NETWORKS  

The basic structure of DNNs consists of an input layer, multiple 

hidden layers, and an output layer. Once input data are given to the 

DNNs, output values are computed sequentially along the layers of the 

network. At each layer, the input vector comprising the output values 

of each unit in the layer below is multiplied by the weight vector for 

each unit in the current layer to produce the weighted sum. Then, a 

nonlinear function, such as a sigmoid, hyperbolic tangent, or rectified 

linear unit (ReLU) [3], is applied to the weighted sum to compute the 

output values of the layer. The computation in each layer transforms 

the representations in the layer below into slightly more abstract 

representations [4]. Based on the types of layers used in DNNs and the 

corresponding learning method, DNNs can be classified as MLP, SAE, 

or DBN. 

MLP has a similar structure to the usual neural networks but includes 

more stacked layers. It is trained in a purely supervised manner that 

uses only labeled data. Since the training method is a process of 

optimization in high-dimensional parameter space, MLP is typically 

used when a large number of labeled data are available. 
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Figure 1. 

 

III. RESEARCH METHODOLOGY 

The proposed classifier is sophisticated to overcome the complexities 

that exist in CTS of biological signals. It introduces three levels of 

learning: within the cycles, over the cycles, and the time series 

classification. The first two levels cope with the nonstationary 

behaviors of the biological CTS, while the last one performs the one-

versus-multiple class learning. The dynamic contents of the time series 

are explored by using the growing sectors in all three schema as 

introduced. The learning process is based on the spectrasectoral 

contents of the growing sectors. Fig. 4.1 demonstrates two cycles of a 

time series along with the growing schema with K = 4 sectors. The 

number of the growing sectors is considered as a design parameter is 

found in the optimization process. The method proposes an algorithm 

for finding an optimal growing center. For a certain sector of a cycle, 

the spectral contents are calculated over the corresponding sectors of 

the other cycles. The resulting spectra-sectoral contents are employed 

for the cyclic learning. The proposed classifier pays special attention 

to the cyclic learning by introducing a novel learning method, the 

DTGNN to improve the discrimination power. 

the classification process along with its flow mapping by means of a 

block diagram. As we will see in the sequels, the DTGNN preserves 

the dynamic content of the cycles in a concise form, which will, in 

turn, decrease the structural risk, in contrast to the existing methods in 

which the cyclic behavior is neglected. The DTGNN is based on 

learning the cyclic contents of CTS by introducing sectoral 

discriminative frequency bands (SDFBs) defined as those frequency 

bands whose sectoral energy provides an optimal segregation between 

the classes. This level of learning is boosted by a preprocessing phase 

in which an effective sectoral profile is identified. The outcomes of 

this level of learning constitute the input layer of the TGNN proposed 

for the cyclic learning. vector quantification technique, using a 

nonlinear and dynamic method, where the learning process is 

performed at the input layer to select proper dynamic characteristics 

and in the middle and output layers for the quantification. In the third 

level, the outcomes of the TGNN are employed by a binary classifier 

after the statistical processing. The supervised learning in both the 

second and third levels utilizes the binary label qi defined in (7) for the 

classification. The learning process is composed of a multiscale 

method for enhanced training, and a systematic procedure is proposed 

to determine the optimal set of design parameters. 

 

IV. RESULT & DISCUSSION 

In the research work the different snap shorts are displayed with 

different respiration wave signals and Camera. These snap shorts are 

given below: 

 

 

 
 

Figure 2:  respiration belt data with average 17.9994 

 

 
 

Figure 3: respiration belt data with average 18.667 

 

The figure 2 and the figure 3 is the processing of respiration belt with 

different average. It displays the cross correlation spectrum and 

continuous respiration rate estimation. 

In the figure 5.1 respiration belt data 1 is displayed. Inside that signal 

filtered and original is given. The cross correlation is given in this 

figure. The respiration belt data with average is 17.9994. But in the 

figure the respiration belt data with average is 18.667. The continuous 

respiration rate estimation graph is displayed. 
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Figure 4: Bar Classification of breath on 1.wav signal 

 

 
 

Figure 5:  1.wav breath signal processing 

  

The figure 4 and the figure 5 displays the 1.wav signal processing with 

soft ,mild and hard breath . it displays the different wave signals that is 

displayed in the figure. 

The figure 5.3 is displaying the three bar graph strips. Out of these one 

is the hard, soft and mild signal strip. It is detected from the respiration 

signal. The figure 5.4 is the 1.wav breathe signal processing. In this 

figure the original strip is the raw signal and other displaying the hard, 

mild and soft breath signal. 

 

 
 

Figure 11: Deep Neural Network processing 

 

 

The figure 11 is the Deep Neural Network Processing. In this figure 

decision boundary at Epoch Number 2300 is displayed . The 

maximum epoch is 5000. Here MSE and Epoch graph is displayed.  

 

 
 

Figure 12: Neural Network processing 

 

The figure 12 is the Neural Network Processing. In this graph 

Amplitude and Time of signal is defined. The amplitude is varied with 

Time. 

 

 
 

Figure 13: original signals 

 

The figure13 is defined the original ECG signal; Here in this figure 

filtered and original ECG signal is defined. 
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Figure 14: Magnitude response and phase response 

 

The figure 14 is the Magnitude response and phase response. In this 

figure Magnitude (db) and Phase (radian) is varied with Frequency 

(KHz). The figure 14 is the magnitude response and Phase response of 

original and filtered signal. The figure 15 is the Electrocardiogram 

original and filtered signal. In this signal zero phase response is also 

displayed. The figure 14 is the magnitude response and phase 

response. The magnitude of the signal is measured in the form of dB 

and the phase is measured in the form of radian. The figure 15 is the 

Electrocardiogram original and filtered signal. Here in this figure 

original signal, filtered signal and Zero phase filtered with fitfit is 

displayed. The red line is the zero phase line. 

 

 

 

 

 
 

Figure 15: Electrocardiogram 

 

The figure 15 is the Electrocardiogram signal. In this figure filtered 

and Original Signal is displayed. 

 

 

 

 

 

 

 

 

 
 

Figure 16: Phase Response 

 

The figure 16 is the Phase response of the signal. In this figure phase 

(radian) is varied along with the frequency of the signal. 

 

V. CONCLUSION & FUTURE WORK 

This paper suggested the use of a multilevel structure for classifying 

CTS using a deep machine learning method named the DTGNN, in 

which the input layer by itself develops a level of cyclic learning. This 

novel fashion of deep learning elaborates the classification 

performance by exploiting the cyclic contents of the time series, which 

makes it suitable for the stochastic CTS. In this paper different 

problems are like specific classification problem, and failed to address 

a deep learning process for finding the characteristics of the growing 

scheme. Another problem is temporal and spectral resolution problem. 

The problem of patient disorder classification and prediction from 

biological signals. All these problems are resolved with modified Deep 

Machine Learning Method for Classifying Cyclic Time Series of 

Biological Signals Using Time-Growing Neural Network. In this work 

all these problems are resolved with the help of Respiration signals 

using Deep neural network and in future it is improved with the help 

of other signals like ECG and EEG signals. 
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