Big Data and Web : DISC in Web Analytics For Large Data Popularity of Online News on Mapreduce Clusters

Mahesh S Nayak Research and Development Centre Bharathiar University, Coimbatore – 641 046 Dr. M. Hanumanthappa Professor, Department of Computer Science & Applications, Bangalore University, Bangalore. Dr. S.Kavitha, Asst.Professor Dayananda Sagar College, Bengaluru – 560078

Abstract— Big data is gathering and analyzing the data. Without analytics, it's just a bunch of data with limited business use. The big amounts of data storing from various sources the significance of analytics has enormously grown making the companies to tap the bunch of data that was considered useless all these years. The importance of big data is given preference as bound to provide results on the fly. The MapReduce paradigm has long been a staple of big data computational strategies. With the development of the Internet with website, people communicate online news articles every day. The percentage of message communication any news article indicates how popular the news is. The objective of the paper is to find the best model and set of feature to predict the popularity of online news, using machine learning techniques. The dataset is collected from UCI Mashable online news website. For the feature set preprocessing is done using unsupervised learning method AddExpression-E 0.0 expression algorithm. We have implemented two classififiers using ZeroR and RepTree classification. We have successfully implemented two clustering algorithms KMeans clustering and Canopy cluster algorithm. Their performances are recorded and compared. The ZeroR gives the best result with less time complexity of 0.05 seconds and canopy clustering took 2.09 seconds. The research can be used in any organization to choose the classifier and cluster algorithm for process the dataset.

Keywords - Big Data, Web, Machine learning; Classification; Clusters

1.Introduction

A.Big data

The sets of data that are large in volume is known as Big Data. The data sets can be mined using big data which includes unstructured, semistructured, and unstructured data. It is very difficult to capturing, managing, and processing the data as complex with less time complexity. The big data plays an important role because of an extreme volume of data and a broad variety of types of data.

Data analytics tools are used to analyze the huge data sets. Without analytics, it's just a mass of data with only for restricted business use. After applying the big data analytics the uses like improvement in efficiency, good customer services, sales improvement, with best efficiency. Data analytics involves investigate the data sets to increase insights and decide conclusions such as predicted value for the upcoming activity.

Big data analytics is useful in identifying patterns and relationships in data set and also to apply various statistical techniques to check whether an hypothesis of the given data set is true or not.

B. Online News Communication

In the daily life in current era is addicted on social communications like online communication to friends through social networks using mobiles or computers. Online communication is helpful in online shopping, searching the particular topic, online payment of bills, e-education and e-banking. When all are started doing online activities as mentioned, it would be greatly helpful if we could accurately predict the popularity of news prior to its publication.

The objective of the paper is to collect the big data set online news popularity and analyze the different classification and clustering algorithms. In this research sparse literature survey is found viz., Ranking SVMs [6], Naive Bayes [5] are investigated, and more advanced algorithms such as Random Forest, Adaptive Boosting [4] could increase the precision, analyzing early users' comments [3], or features about post contents and domains [5].

2. Data Set Information:

A. The online news dataset is collected by UCI machine learnig website. It summarizes a different group of features regarding articles published by Mashable for two years. The data set is used to classification algorithms and clustering algorithms to predict the best algorithm to find popularity of news articles in big data set.

B. Attribute Information:

The dataset is multivariate characteristics[2]. The dataset contains integer and real, totally 39797 instances, 61 attributes. The full feature set is visualized in the figure 1.

Fig. 1. 61 Attributes visualization

C. Feature set

For the entire feature set preprocessing is done using unsupervised learning method AddExpression-E 0.0 expression algorithm. (Fig 2). The AddExpression applys a mathematical expression involving attributes and numeric constants to a dataset. A new attribute is appended after the last attribute that contains the result of applying the expression. The operators which are supported for the algorithm are: +, -, *, /, ^, log, abs, cos, exp, sqrt, floor, ceil, rint, tan, sin, (,). The –E filter option specifies the expression to apply.

				1.1	- 01				1000	111070		_
Operille.	OpenURL.		Cher (29		Gen	1. I.	24	1.	08.		344	
Cw												
Orana Andioannese Elli	Vagessoe											44
artivel relation						Aver-bit statute						
Relation (Intrafferen/President) Instances 32644			4	interestion for an analysis	11 20044	Narw polat_ce Heary 3.0%)	enio(joiath Dat	ne 3401		Tipe Numer Verigen: 32174	1 876	
Ardenius						Bull AL		1	164			
	- 100 million - 100					Rainur			173			
	Think	Elef.		Paters -		Sean .			6.119			
No. Nore												
AL LIAN					- 14							
-81 JDA, 83					- 11							
A LDA H					- 11							
an Burtha Jackwood on					- 88							
47 _ global_cale_pondue_	ects				- 11	Date Marridens						Velatio
ALL DOM, OR, MORES,	,4919.				- 10							
50 Min. stapite yords					- 11			0.000				
-51 all points, prints							1	i ath.				
12 min. positive polarity					- 11			ાનાણ				
54 July relative posets					- 11			-311110	k			
55 min_stapitur_point					- 21			,410,000	h.			
10 NOLDEDRIGHT	1-				- 5				Br.			
							ं जी		lillike –			
	2410	÷					retti		IIIIIbs			
						12					_	1.72
talia i												
ok .											1.14	105
											1	Cold Street, or other

Fig 2: Preprocessing method AddExpression-E 0.0 expression

3. Resulta and Discussion

A.Classification

i.ZeroR

C Neks Forler

Classification using misc-InputMappedClassifier-I-Trim -w weka.Claasifiers.rules.zeroR algorithm. ZeroR is the simplest classification method which relies on the target and ignores all predictors. ZeroR classifier simply predicts the majority category (class). Although there is no predictability power in ZeroR, it is useful for determining a baseline performance as a benchmark for other classification methods. The zeroR algorithm constructs a frequency table for the target and select its most frequent value shown in fig 3. 0

aniher				
Chattan InputNapperClassifier - 177	n 4V weka classifiers rules ZereR			
t aphone	Classifier output			
Use traverg set	Transie your are calling and	and the instants	generation approximation	
Supplier tool per	ingeric) rate montive wirds	> St Ingentic)	rate peoplity winds	
and the second se	Insection and Dositive polarity	-> \$1 (mammile)	any popilive pilarity	
Crass-webstee Fales to	(mmeric) min_positive_polarity	-> St (numeric)	min_positive_polarity	
Percentage april 5	(mameric) man_positive_polarity	> 85 (mammile)	man_positive_polarity	
	(mmetic) #uflueSetIneToffstilA.	-> 54 (numeric)	wid_poderine_bergarrah	
Hore aptions	(americ) arginelerinelberath	-> 55 (numeric)	miz_selective_bergarrah	
	(suscio) and pedeite lotarity	-> 56 [Egmente]	use_sofeites_berstill	
and the second se	(mmeric) title_subjectivity	> ST [Edmeric]	tree amplectateA	
t) sfares	(americ) the title scheduler)	St (Descript)	the sitte schemic pointly	
	inserio) and title sections columns		and title seatheast collectry	
Slat	inserie) shares		starter	
dt hut (right-click for options)				
277-32 - misc SerializedClassifiet	fime teken to bulld model: 0.05 seconds			
227.42-macroothapentDasafe)				
	*** Cross-Validation ***			
	and Sumery and			
	Convelative metflorest [-0.01]	1.1		
	Weat shanlets wrow 1105.250	18		
	Boot mean amaged entrie 11416.401	1		
	Relative abeilune error 100			
	Buyt relative squared error 100			
	Tutal Mater of Instances (9644			
1				115 400

The scheme used is weka.classifiers.misc.InputMappedClassifier -I -trim -W weka.classifiers.rules.ZeroR. Totally 39644 instances, 61 Attributes,10-fold cross-validation Test mode used. Full training set is used for the classification. Using the InputMappedClassifier ZeroR predicts class value of 3395.3801836343455.Time taken to build model: 0.05 seconds.

Correlation coefficient	-0.0114
Mean absolute error	3205.4948
Root mean squared error	11626.9803
Relative absolute error	100 %
Root relative squared error	100 %
Total Number of Instances	39644

ii.REPTree classifier

REPTree is the fast decision tree learner compared to other classifiers shown in fig 4. The resultant of the tree is decision or regression tree using information gain or variance[1]. The algorithm improves the performance with less error with backfitting[7]. It arranges the data points for numeric attributes as shown in the diagram.

			2	 		R	A		
arista Anati anno	s [Dame [Attram] Se	a Janata Jan	- etter						(8.15)
911	Torra Pro	-		-	dan art bill y start of		and Assess	nch.m.	
	1.12				近海	and the	A CONTRACTOR	Tracing internal	100
0.000					Service .	No. Contra	an integ	livin a	
1	1	1				No.		Comments of	
(re)		-0							
-	and play				evenine (e	10.1			
	_	_	_	_	42	_	_	_	_
					115.				280

Fig 4: Result of REPTree classifier

Time taken to build model: 0.91 seconds.

B. Clustering

i. kMeans clustering

Total number of 19 iterations. Within cluster sum of squared errors: 154201.3671388387.

Time taken to build model (full training data) : 2.3 seconds

=== Model and evaluation on training set ===

Clustered Instances 0 20933 (53%) 18711 (47%)

ii. Canopy Clustering Algorithm

The Canopy algorithm basically uses mathematical distance functions,hence it needs thresholds as its applicability for multi-dimensional. The canopy clustering algorithm belongs to unsupervised preclustering algorithm. The preprocessing stage for the K-means algorithm is done by Canopy algorithm. As the result of less time complexity, this algorithm is applied on many large datasets for evaluation and predictions(fig 5).

Start with the set of data points to be clustered.n=number of points in dataset

Step 1: Start with new canopy after deleting the point from the dataset

Step 2: while(n>0)

For the remaining points, if the distance<L is assign it to the new canopy L=loose distance

Step 3: distance<=tight distance, delete it

Where all the data points are not belongs to the same canopy. The advantages of the K-Means algorithm is that The number of instances of training data that must be compared at each step is reduced and there is some evidence that the resulting clusters are improved. Table 1 shows the total number of cluster with cluster 0 and cluster 1.

Papeness Dates Dates Adverse Sea	tittide i Isalie	
	The Property of the Property of the Article of the	
Change ()-1 min und side 110 pr	nde gewang (1010 em alembra 14 C 10 R 12 R 1	
Asian mote	Devices output	
Constraining all Support fraction Provide and	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
C		14
fate		

Fig 5.Screen shot for the canopy n 1 cluster.

	Cluster#	Full Data	Cluster (Cluster 1	
1	timedelta	354.5305	357.2445	351.4941	
2	n_tokens_t	itle 10.3987	10.1495	10.6776	
3	n_tokens	_content 546.5147	549.1829	543.5297	
4	n_unique	_tokens 0.5482	0.53	0.5686	
5	n_non_sto	op_words 0.9965	0.9748	1.0207	
6	n_non_st	op_unique_tokens 0.0	5892 0.676	0.7039	
7	num_hre	efs 10.8837	10.5766	11.2273	
8	num_self	_hrefs 3.2936	3.3159	3.2688	
9	num_imgs4	4.5441	4.1348	5.0021	

10	1 1 2400	1.02.52		1 5012	
10	num_videos1.2499	1.0252		1.5013	
11	average_token_length4.5482	4.5824		4.51	
12	num_keywords 7.2238	7.2018		7.2483	
13	data_channel_1s_lifestyle 0.0529	0.0531		0.0527	
14	data_channel_is_entertainment 0.178	0.1484		0.2112	
15	data_channel_is_bus0.1579	0.1683		0.1462	
16	data_channel_is_socmed 0.0586	0.0614		0.0554	
17	data_channel_is_tech 0.1853	0.1972		0.1719	
18	data_channel_is_world0.2126	0.2517		0.1688	
19	kw_min_min 26.1068	26.5886		25.5678	
20	kw_max_min 1153.9517	1112.0449		1200.8351	
21	kw_avg_min 312.367	307.9767		317.2786	
22	kw_min_max 13612.3541	12223.7366		15165.875	
23	kw_max_max 752324.0667	750359.1458		754522.3291	
24	kw_avg_max 259281.9381	253285.9262		265989.9985	
25	kw_min_avg 1117.1466	1062.0118	Aller.	1178.8289	
26	kw_max_avg 5657.2112	5400.942		5943.9132	
27	kw_avg_avg3135.8586	3021.4272		3263.8793	
28	self_reference_min_shares3998.7554	3928.4182		4077.4454	
29	self_reference_max_shares 10329.2127	9848.1021		10867.4569	
30	self_reference_avg_sharess 6401.6976	6197.488		6630.1577	
31	weekday_is_monday 0.168	0.1703		0.1655	
32	weekday_is_tuesday 0.1864	0.1892	1	0.1833	
33	weekday_is_Wednesday 0.1875	0.193		0.1814	
34	weekday_is_thursday 0.1833	0.1824		0.1843	
35	weekday_is_friday 0.1438	0.1458		0.1416	
36	weekday_is_saturday 0.0619	0.0587		0.0654	
37	weekday_is_sunday 0.069	0.0606	A PROVIDENCE	0.0785	
38	is_weekend 0.1309	0.1193		0.1439	
39	LDA_00 0.1846	0.1929		0.1753	
40	LDA_01 0.1413	0.1224	A CAL	0.1624	
41	LDA_02 0.2163	0.2468		0.1823	
42	LDA_03 0.2238	0.1 <mark>921</mark>	<u> </u>	0.2592	
43	LDA_04 0.234	0.24	159	0.2208	
44	global_subjectivity 0.4434		0.434	0.453	8
45	global_sentiment_polarity 0.1193		0.1157		0.1234
46	global_rate_positive_words 0.0396		0.0372		0.0423
47	global_rate_negative_words0.0166		0.0157		0.0176
48	rate_positive_words 0.6822		0.6825	0.6	817
49	rate_negative_words 0.2879	-	0.2921	0	.2833
50	avg_positive_polarity 0.3538		0.3497		0.3584
51	min_positive_polarity 0.0954		0.0953		0.0956
52	max_positive_polarity 0.7567		0.7438		0.7712
53	avg_negative_polarity -0.2595		-0.2529		-0.267
54	min_negative_polarity -0.5219		-0.5127		-0.5323
55	max_negative_polarity -0.1075		-0.106		-0.1091
56	title_subjectivity 0.2824		0.0203	0.57	55
57	title_sentiment_polarity 0.0714		0.0031		0.1479
58	abs_title_subjectivity 0.3418		0.4817	0.1	854
59	abs_title_sentiment_polarity 0.1561		0.0132		0.3159
60	shares 3395.3802	3220.7258			

Table 1: Canopy clustering Total # of cluster, Cluster 0 and Cluster 1

Graph 1: Canopy clustering Total # of cluster, Cluster 0 and Cluster 1

Time taken to build model (full training data): 2.09 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 20032 (51%)

1 19612 (49%) Log likelihood: -171.76913

61

=== Cross-validation ===

=== Summary ===

Correlation coefficient Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances -0.0114 3205.4948 11626.9803 100 % 100 % 39644

Conclusion

In the research paper classification and clustering algorithms are evaluated using the big data set. The preprocessing is done using unsupervised learning method AddExpression-E 0.0 expression algorithm. We have implemented two classififiers using ZeroR and RepTree classification. We have successfully implemented two clustering algorithms such as KMeans clustering and Canopy cluster algorithm. Their performances are recorded and compared. The ZeroR gives the best result with less time complexity of 0.05 seconds and canopy clustering took 2.09 seconds. In the future enhancement other classification algorithms can be eevaluated to improve the accuracy and time complexity.

References

- 1. http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html
- 2. https://archive.ics.uci.edu/ml/index.php
- Hensinger, Elena, Ilias Flaounas, and Nello Cristianini. "Modelling and predicting news popularity." Pattern Anal- ysis and Applications 16.4 (2013): 623-635.
- 4. K. Fernandes, P. Vinagre and P. Cortez. A Proactive In- telligent Decision Support System for Predicting the Popularity of Online News. *Proceedings of the 17th EPIA 2015 Portuguese Conference on Artificial Intelligence*, September, Coimbra, Portugal.
- 5. Predicting the Popularity of Social News Posts." 2013 cs229 projects. Joe

Maguire Scott Michelson

6.Tatar, Alexandru, et al. "Predicting the popularity of online articles based on user comments." Proceedings of the International Conference on Web

Intelligence, Mining and Semantics. ACM, 2011.

7. "Predicting and Evaluating the Popularity of Online News",He Ren and Quan Yang, pp.1-5

