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Abstract :  Forward Error Correction (FEC) codes are used for error detection and correction in communication systems. Low 

Density Parity Check (LDPC) codes are used as powerful FEC codes in long distance communication systems which work close 

to the Shannon limit. Linear LDPC block codes will have sparse parity-check matrices. The decoding algorithm used for LDPC 

codes is an iterative message passing algorithm (MPA). LDPC codes are used to reduce bit rate error (BER). This paper discusses 

BER performance of LDPC codes using Binary Phase Shift Keying (BPSK) modulation with different combining techniques used 

for mitigating the fading effects in Rayleigh channels. Maximal Ratio Combining (MRC) provides excellent reduction in BER as 

compare to Selection Combining (SC) and Equal Gain Combining (EGC). The simulation results show that with LDPC codes the 

performance of diversity combining techniques has been improved when compared with uncoded diversity combining techniques. 

Finally, it is shown that the BER performance of LDPC codes in Rayleigh channels has improved dramatically in the higher SNR 

region. 
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I. INTRODUCTION 

      Low Density Parity Check (LDPC) codes provide high coding gain with low bit error rate (BER). Like Turbo codes, LDPC 

codes work close to Shannon limit. But decoding complexity is high in Turbo codes than LDPC codes [1]. These codes decoded 

with Belief Propagation (BP) algorithm achieve the optimum performance when the channel is completely known at the receiver 

[1]. LDPC codes have certain advantages, such as simple descriptions of their code structure and fully parallelizable decoding 

implementations. With iterative message passing decoders, LDPC codes exhibit an interesting noise threshold effect, if the noise 

level of the channel is smaller than a certain noise threshold, the bit error probability goes to zero as the block size goes to 

infinity; if the noise level is above the noise threshold, the probability of error is always bounded away from zero. Gallager [2] 

first presented this result for regular LDPC codes for the binary symmetric channel (BSC). Luby et al. [3] showed that the noise 

threshold effect also exists for irregular LDPC codes, and they designed some irregular LDPC codes whose performance is very 

close to the Shannon limit on the erasure channel. Richardson, etal. [4] generalized this idea to a variety of message passing (BP) 

decoding algorithms, including its full version [5] which can be applied to a very broad class of BSCs. An estimation of the 

waterfall performance of LDPC codes is derived that reduces the gap between simulated and asymptotic performance [6]. In [7], 

irregular LDPC codes of larger lengths were analyzed in a flat uncorrelated as well as in a flat correlated Rayleigh fading channel. 

The channel model assumed in [7] was a slow memoryless frequency non-selective (i.e., flat) Rayleigh fading channel with a 

large coherence time. This effectively means that during the entire transmission the channel stays coherent. 

      The code optimization of irregular LDPC codes is a nonlinear cost function minimization problem, a problem where 

differential evolution has been shown to be effective [8]. In the year 1995, LDPC codes were rediscovered by Mackay at al. [9] 

whose performance is closest to the Shannon limit based on irregular graphs. Mackay at al. investigated constructions of regular 

and irregular Gallager codes that allow more rapid encoding and have smaller memory requirements in the encoder and found that 

these fast encoding Gallager codes have equally good performance. 

In this paper, we evaluate the performance of LDPC codes with SC, EGC ad MRC techniques. The paper is organized as follows. 

Section II briefly reviews the basic concepts of LDPC codes. In Section III, we review the encoding of LDPC codes. We discuss 

the decoding of LDPC codes in Section IV. In Section V, we present the results on BER performance of LDPC codes in Rayleigh 

fading channel with and without combining techniques. Section VI concludes our work. 

 

II. LOW DENSITY PARITY-CHECK CODES 

       LDPC is a linear block code in which the parity check matrix has sparse property. The number of 1s in the H matrix is very 

less compared to number of zeros. LDPC codes were first introduced by Gallager in 1962 [2]. But at that time because of the 

computational complexity, it was largely neglected. In the meantime, the field of forward error correction was dominated by 

highly structured algebraic block and convolutional codes. After the discovery of Turbo codes, the LDPC codes were eventually 

revisited by MacKay, Neal, Sipser and Spielman and Richardson and Urbanke.  MacKay and Neal verified the performance of 

LDPC close to shannon limit [9]. Sipser and Spielman proved that with N tends to ∞ linear decoding complexity was sufficient to 

decode capacity approaching codes. The mathematical tool to estimate the performance of codes and to build capacity reaching 

codes was developed by Richardson and Urbanke [4]. The rediscovery of the LDPC gives a drastic change in error correction 

coding field. LDPC codes are block codes with parity-check matrices that contain only a very small number of non-zero entries 
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[10]. It is the sparseness [11] of H which guarantees both a decoding complexity which increases only linearly with the code 

length and a minimum distance which also increases linearly with the code length. LDPC codes are represented in two ways. One 

is matrix form of its H matrix and second is graphical form. The graphical representation of LDPC codes are known as the Tanner 

graph, which was introduced by Tanner [12]. Tanner graph is a bipartite graph, which means the graph is separated into two 

partitions. These partitions are called by different names: sub code nodes and digit nodes, variable nodes and check nodes, 

message nodes and check nodes [13]. The matrix representation and corresponding tanner graph of a sample parity check matrix 

is shown Fig.1.  

       Here C1, C2, ... C8 are the variable nodes and f1, f2, f3, f4 are the check nodes. Tanner is known as the originator of the 

codes based on graphs. The tanner graph [14] have an important role in the development of decoding algorithm of LDPC. In 

decoding of LDPC codes, iterative probabilistic decoding algorithms are widely used. McEliece have shown that these decoding 

techniques can be derived from Pearls belief propagation algorithm, or message passing algorithm [15]. 

The connection between the message node and check node is known as edge. The number of edges in the tanner graph equal to 

number of ones in parity check matrix. A code is said to be systematic, if and only if the message bit node can be distinguishable 

from the parity bit nodes by placing them on separate side of the graph [16]. A sequence of connected vertices which start and end 

at the same vertex in the graph and which contain other vertices no more than once is known as a cycle in a tanner graph. The 

number of the edges in a tanner graph gives the length of the cycle. Size of the smallest cycle is known as girth of a graph. 

 

III. LDPC ENCODING 

      Let u be a message block, G is generator matrix, H is parity check matrix. parity-check matrix H can be found by performing 

Gauss-Jordan elimination on H to obtain it in the form 

𝐻 = [𝐴, 𝐼𝑛−𝑘]                                 (1) 
where A is a (n-k)Xk binary matrix and In-k is the size (n - k)identity matrix. The generator matrix is then 

𝐺 = [𝐼𝑘 , 𝐴𝑘]                                   (2) 
      By applying proper elementary operation and convert H matrix into row reduce echelon from. This gives the sparse property 

for H matrix. Sparse property means number of 1s is less than the number of 0s. Sparse property make the LDPC less complex. 

Code word is generated by modulo 2 addition of message bits u with generator matrix G. 

𝐶 = 𝑢𝐺                                          (3) 
C is code word, u is input message bits and G is generator matrix. 

IV. LDPC DECODING 

      LDPC code decoding is performed through iterative processing based on the Tanner graph, to satisfy the parity check 

conditions. The condition that CHT = 0 is known as parity check condition. If CHT = 0 then the received code word is said to be 

valid, that is the received code word is similar to the transmitted code word. Iterative decoding has two variations namely hard 

decision and soft decision decoding algorithms. The decision made by the decoder based on the received information is called a 

hard-decision if the value of a single bit can either be 0 or 1. Example for hard decision decoding in LDPC is Bit Flipping 

Algorithm. If the decoder is able to distinguish between a set of quantized values between 0 and 1, then it is called a soft-decision 

decoder. These values give the probability of a particular bit in a node. The sum product algorithm is a soft decision message-

passing algorithm. 

 

      A Message Passing Algorithm (MPA) [17] based on Pearls belief algorithm describes the iterative decoding steps. The reason 

for the name message passing algorithm is that at each round of the algorithms messages are passed from message nodes to check 

nodes, and from check nodes back to message nodes in the tanner graph. Different message-passing algorithms are named for the 

type of messages passed or for the type of operation performed at the nodes. In some algorithms, such as bit flipping decoding, 

the messages are binary and in others, such as belief propagation decoding, the messages are probabilities which represent a level 

of belief about the value of the code word bits [18]. It is often convenient to represent probability values as log likelihood ratios, 

and when this is done belief propagation decoding is often called sum-product decoding since the use of log likelihood ratios 

allows the calculations at the bit and check nodes to be computed using sum and product operations [19]. 

 

 

` 

Figure 1: Tanner graph 
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Hard decision decoding 

      Bit flipping algorithm is the best example for hard Decision decoding. In the bit-flipping algorithm the messages are passed 

along the Tanner graph edges. A message node sends a message declaring if it is a one or a zero, and then each check node sends 

a message to each connected message node by finally declaring that what value the bit is based on the information available to the 

check node [20]. The algorithm is explained on the basis of an example code word C = [11001000]𝑇 . Suppose that the received 

cord word is Y = [11001000]𝑇 . So C2 was flipped. The figure1 shows the tanner graph which is used for decoding algorithm. 

The steps involved in the bit flipping algorithm is given in Tabel:1 and Tabel:2. 

Soft decision decoding 

      Soft-decision decoding is based on the idea of belief propagation. The sum-product algorithm is a soft decision message 

passing algorithm. In the case of sum product decoding these probabilities are expressed as log-likelihood ratios. Log likelihood 

ratios (LLR) are used to represent the matrix for a binary variable by a single value. The sum-product algorithm is a soft decision 

message-passing algorithm [21] which is similar to the bit-flipping algorithm. The main difference between SPA and bit flipping 

algorithm is that each decision is represented with probabilities of the information bits. 

Pi = Pr(Ci = Yi) 

qji is a message sent by the message node Ci to the check node fj. Every message contains always the pair qij(0) and qij(1) which 

stands for the amount of belief that Yi is a 0 or 1. 

rji is a message sent by the check node fj to the variable node Ci. Again there is a rji(0) and rji(1) that indicates the (current) 

amount of belief that Yi is a 0 or 1. 

The steps involved in sum product algorithm 

Step 1: All message nodes send their qij messages. 

qij(1) = Pi and qij(0) = 1 − Pi 

Step 2: the check nodes calculate their response messages rji,using the formula shown below (4) 

rji(0) =
1

2
+

1

2
∏ (1 − 2qij(1))

i∈πυj/i

       (4) 

and 

rji(1) = 1 − rji(0)                       (5) 

Step 3: The message nodes update their response message to the check nodes using  

qji(0) = kij(1 − pi) ∏ (rj′i(0))

j′∈
Ci
j

       (6) 

And 

 

Table 1: Overview of messages received and sent by the check nodes 

 
Table 2: Message nodes decisions for hard decision decoder 
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qji(1) = kij(pi) ∏ (rj′i(1))

j′∈Ci/j

             (7) 

Constant kij are chosen in such a way to ensure that 

qij(0) + qij(1) = 1                    (8) 

 

At this point the message nodes also update their current estimation Ci
′ of their Ci. This is done by calculating the probabilities for 

0 and 1 and voting for the bigger one. 

Qi(0) = ki(1 − pi) ∏ (rji(0))

j∈Ci

        (9) 

and 

Qi(1) = ki(pi) ∏ (rji(1))

j∈Ci

             (10) 

Step 4: Ci is 1 if Qi(1) > Qi(0). Otherwise Ci is zero. 

Go to step 2. 

      SPA algorithm provides low complexity in log domain than in the probability domain. Using log ratio turns multiplication 

into additions. This makes algorithm simpler. 

 

V. RESULTS AND DISCUSSION 

      The simulations were carried with the parameters shown in Table 3.  

The simulation results on BER performance of LDPC codes with selection combining for various values of Eb/N0 are tabulated in 

Table:4. 

Table 3: Parameters 

Parameter Value 

Number of input data 1000 bits 

Modulation technique BPSK 

Channel model Rayleigh fading 

Diversity combining SC, MRC, EGC 

FEC coding LDPC codes 

 

Performance evaluation of LDPC codes with Selection Combining: 

 

 
Figure 2: BER performance of  LDPC codes with Selection Combining in Rayleigh Channel 

 

Table 4: BER performance of LDPC codes with Selection Combining at different Eb/N0 values 

Eb/N0 BER for 

uncoded SC 

BER for 

coded SC 

4 4.11 ∗ 10−2 2.267 ∗ 10−2 

5 3.335 ∗ 10−2 1.75 ∗ 10−2 

7 2.194 ∗ 10−2 9.639 ∗ 10−3 

9 1.409 ∗ 10−2 5.226 ∗ 10−3 
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The simulation results on BER performance of LDPC codes with Equal Gain Combining for various values of Eb/N0 are tabulated 

in Table:5. 

 

Performance evaluation of LDPC codes with Equal Gain Combining: 

 

 

 
Figure 3: BER performance of LDPC codes with Equal Gain Combining in Rayleigh channel 

 

 

Table 5: BER performance of LDPC codes with Equal Gain Combining at different Eb/N0 values 

Eb/N0 BER for 

uncoded 

EGC 

BER for 

coded EGC 

4 2.072 ∗ 10−2 6.183

∗ 10−3 

5 1.461 ∗ 10−2 3.635

∗ 10−3 

7 6.824 ∗ 10−3 1.237

∗ 10−3 

9 3.034 ∗ 10−3 3.91 ∗ 10−4 

 

Performance evaluation of Maximal Ratio Combining with LDPC codes: 

 
Figure 4: BER performance of LDPC codes with Maximal Ratio Combining in Rayleigh channel 
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     The simulation results on BER performance of LDPC codes with Maximal Ratio Combining for various values of Eb/N0 are 

tabulated in Table:6. 

      The simulation results on BER performance of LDPC codes with various combining techniques at  Eb/N0 value of 10 dB are 

tabulated in Table:7. 

 

Table 6: BER performance of LDPC codes with Maximal Ratio Combining at different Eb/N0 values 

Eb/N0 BER for uncoded 

MRC 

BER for coded 

MRC 

4 1.327 ∗ 10−2 2.855 ∗ 10−3 

5 8.416 ∗ 10−3 1.505 ∗ 10−3 

7 3.402 ∗ 10−3 3.9 ∗ 10−4 

9 1.279 ∗ 10−3 8.2𝑒−05 

 

 

 

Table 7: The simulation results on BER performance of LDPC codes with various combining techniques at Eb/N0 value of 10 dB 

At 10 dB Eb/N0 

Diversity 

combining 

techniques 

Without LDPC With LDPC 

SC 1.089 ∗ 10−2 3.72 ∗ 10−3 

EGC 2.065 ∗ 10−3 2.03 ∗ 10−4 

MRC 7.82 ∗ 10−4 3.3𝑒−2 

VI. CONCLUSION 

      Diversity combining techniques such as Selection Combining(SC), Maximal Ratio Combining(MRC) and Equal Gain 

Combining(EGC) are very important part of the wireless communication system. They are used to mitigate the effect of fading. 

LDPC codes are the most powerful error control codes. Their performance is within 0.2dB of Shannon capacity. In this paper, 

BER performance of LDPC codes is evaluated with various combining techniques  over the independent and identically 

distributed Rayleigh fading environment with BPSK modulation. It is concluded that the BER performance of LDPC codes with 

diversity combining techniques is superior to uncoded diversity combining techniques. More specifically, performance of LDPC 

codes with MRC is the best.  
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