3-EQUITABLE Prime Cordial Labeling in Theta GRAPH

A. Sugumaran ${ }^{1}$ and P. Vishnu Prakash ${ }^{2}$
${ }^{1 \& 2}$ Department of Mathematics, Government Arts College, Tiruvannamalai, Tamilnadu,India.

Abstract

Let $G=(V, E)$ be a simple graph with p vertices and q edges. A 3-equitable prime cordial labeling of a graph G is a bijection f from $V(G)$ to $\{1,2, \ldots|V(G)|\}$ such that if an edge uv is assigned the label 1 if $\operatorname{gcd}(f(u), f(v))=1$ and $\operatorname{gcd}(f(u)+f(v), f(u)-f(v))=1$, the lable 2 if $\operatorname{gcd}(f(u), f(v))=1$ and $\operatorname{gcd}(f(u)+f(v), f(u)-f(v))=2$, and the label 0 otherwise, then the number of edges labeled with i and the number of edges labeled with j differ by at most 1 for $0 \leq i \leq 2$ and $0 \leq j \leq 2$. If a graph has a 3 -equitable prime cordial labeling, then it is called a 3 -equitable prime cordial graph. In this paper, we discuss 3-equitable prime cordial labeling in the context of some graph operations namely duplication, switching, fusion, path union of two copies and the open star graph of Theta graph.

Keywords: 3-equitable prime cordial labeling, duplication, fusion, switching, path union and open star of graphs

AMS Mathematics Subject Classification (2010): 05C78

I. Introduction

Graph labeling have enormous applications within mathematics as well as to several areas of computer science and communication networks. In this paper, we consider only finite, simple undirected graphs. For graph theoretic notations and terminology we follow Harary [4] and for number theory we follow Burton [1]. A labeling of a graph G is a mapping that carries vertices and/or edges into a set of numbers, usually integers. In the present work, denotes the Theta graph with 7 vertices and 8 edges. A current survey of various graph labeling problems can be found in Gallian [3]. We shall give a brief summary of results which are useful in the present paper.

Definition 1.1: A binary vertex labeling f of a graph G is called a cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
A graph which admits cordial labeling is called a cordial graph. The concept of cordial labeling was introduced by Cahit [2].
Definition 1.2: A prime cordial labeling of a graph G with vertex set $V(G)$ is a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ defined by

$$
f(e=u v)=\left\{\begin{array}{l}
1 \quad \text { if } \quad \operatorname{gcd}(f(u), f(v))=1 \\
0 \text { otherwise }
\end{array}\right.
$$

further $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
A graph which admits prime cordial labeling is called a prime cordial graph. The concept of prime cordial labeling was introduced by Sundaram et al. [6].

Definition 1.3: A 3-equitable prime cordial labeling of a graph G with vertex set $V(G)$ is a bijection $f: V(G) \rightarrow$ $\{1,2,3, \ldots,|V(G)|\}$ defined by

$$
f(e=u v)=\left\{\begin{array}{l}
1 \text { if } \operatorname{gcd}(f(u), f(v))=1 \text { and } \operatorname{gcd}(f(u)+f(v), f(u)-f(v))=1 \\
2 \text { if } \operatorname{gcd}(f(u), f(v))=1 \text { and } \operatorname{gcd}(f(u)+f(v), f(u)-f(v))=2 \\
0 \text { otherwise }
\end{array}\right.
$$

further $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$.
A graph which admits 3-equitable prime cordial labeling is called a 3-equitable prime cordial graph. The concept of 3equitable prime cordial labeling was introduced by Murugesan et al. [5].

Now let us recall the definition of Theta graph and the graph operations such as duplication, switching, fusion and path union of open star of a graph.
Definition 1.4. A Theta graph $\theta(\alpha, \beta, \gamma)$ consists of three vertex disjoint paths of length α, β, γ having common end point, where $\alpha \leq \beta \leq \gamma$.

Throughout this paper, we consider the Theta graph $\theta(2,3,3)$ only and we denote this graph by T_{α}, we fix the position of vertices in Theta graph T_{α} as mentioned in the Figure 1.

Figure 1: Theta graph T_{α}
Definition 1.5. Duplication of a vertex v_{k} of a graph G produces a new graph G_{1} by adding a vertex $v_{k}{ }^{\prime}$ with $N\left(v_{k}^{\prime}\right)=N\left(v_{k}\right)$. In other words, a vertex v_{k}^{\prime} is said to be a duplication of v_{k} if all the vertices which are adjacent to v_{k} are adjacent to $v_{k}{ }^{\prime}$ also.

Definition 1.6. A vertex switching of a graph G is a graph G_{v} obtained from G by removing all the edges incident to v and adding edges joining v to every other vertices which are not adjacent to v in G.

Definition 1.7. Let u and v be any two distinct vertices of a graph G. A new graph G_{1} is constructed by fusing (identifying) two vertices u and v by a single vertex x in G_{1} such that every edge which was incident with either u or v in G is now incident with x in G_{1}.

Definition 1.8. Let $G_{1}, G_{2}, G_{3}, \ldots G_{n}, n \geq 2$ be n copies of a fixed graph G. The graph obtained by adding an edge between G_{i} and $G_{i}+1$ for $i=1,2, \ldots n-1$ is called the path union of G.

Definition 1.9. A graph obtained by replacing each vertex of $K_{1, n}$ except the apex vertex by the graphs $G_{1}, G_{2}, \ldots, G_{n}$ is known as open star of graphs. We shall denote such graph by $S\left(G_{1}, G_{2}, \ldots, G_{n}\right)$.

If we replace each vertices of $K_{1, n}$ except the apex vertex by a graph G. i.e. $G_{1}=G_{2}=\cdots=G_{n}=G$, such open star of a graph, is denoted by $S(n \cdot G)$.

2. Main results:

Theorem 2.1. The Theta graph T_{α} is a 3-equitable prime cordial graph.

Proof: Let $v_{0}, v_{1}, v_{2}, \ldots, v_{6}$ are the vertices of the Theta graph T_{α} with v_{0} be the central vertex and $E\left(T_{\alpha}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq 5\right\} \cup\left\{v_{0} v_{1}, v_{0} v_{4}, v_{1} v_{6}\right\}$, then $\left|V\left(T_{\alpha}\right)\right|=7$ and $\left|E\left(T_{\alpha}\right)\right|=8$.
We define vertex labeling $f: V\left(T_{\alpha}\right) \rightarrow\{1,2,3, \ldots, 7\}$ as follows.
$f\left(v_{0}\right)=6, f\left(v_{1}\right)=3, f\left(v_{2}\right)=7, f\left(v_{3}\right)=4, f\left(v_{4}\right)=2, f\left(v_{5}\right)=5, f\left(v_{6}\right)=1$
For the graph T_{α} the possible pairs of labels of adjacent vertices are
$(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)$, $(5,6),(5,7),(6,7)$.

Then $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for $i, j=0,1,2$.
Therefore, T_{α} is a 3-equitable prime cordial graph.

Figure 2: 3-equitable prime cordial Theta graph T_{α}
Theorem 2.2. The duplication of any vertex in the Theta graph T_{α} is a 3-equitable prime cordial graph.
Proof: Let $v_{0}, v_{1}, v_{2}, \ldots, v_{6}$ are the vertices of the Theta graph T_{α} with centre v_{0} and
$E\left(T_{\alpha}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq 5\right\} \cup\left\{v_{0} v_{1}, v_{0} v_{4}, v_{1} v_{6}\right\}$, then $\left|V\left(T_{\alpha}\right)\right|=7$ and $\left|E\left(T_{\alpha}\right)\right|=8$.
Let G_{i} be a graph obtained from T_{α} after duplication vertex of the vertex v_{i} in T_{α} and $v_{i}{ }^{\prime}$ be the duplication vertex of the vertex v_{i}. Clearly $\left|V\left(G_{i}\right)\right|=8$.

We define vertex labeling $f: V\left(G_{i}\right) \rightarrow\{1,2,3, \ldots, 8\}$ as in the following cases:
Case (i): Duplication of the vertex v_{i} for $i=0,1,2,3,5,6$.
We define $f\left(v_{i}^{\prime}\right)=8$ for $i=0,1,2,3,5,6$. where v_{i}^{\prime} is the duplicating vertex of v_{i}.
Further, $f\left(v_{0}\right)=6, f\left(v_{1}\right)=3, f\left(v_{2}\right)=7, f\left(v_{3}\right)=4, f\left(v_{4}\right)=2, f\left(v_{5}\right)=5, f\left(v_{6}\right)=1$.
Case (ii): Duplication of the vertex v_{4}
We define $f\left(v_{4}{ }^{\prime}\right)=8$ for $i=4$ where $v_{4}{ }^{\prime}$ is the duplicating vertex of v_{4}.
Further, $f\left(v_{0}\right)=2, f\left(v_{1}\right)=3, f\left(v_{2}\right)=7, f\left(v_{3}\right)=4, f\left(v_{4}\right)=6, f\left(v_{5}\right)=5, f\left(v_{6}\right)=1$.
Thus in both cases, we have $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for $i, j=0,1,2$.
Hence the graph obtained by the duplication of any vertex v_{i} in the Theta graph T_{α} is a 3-equitable prime cordial graph.

Figure 3: The duplication of the vertex v_{5} in T_{α} is a 3-equitable prime cordial graph

Theorem 2.3. The switching of any vertex in the Theta graph T_{α} is a 3-equitable prime cordial graph.
Proof: If $v_{0}, v_{1}, v_{2}, \ldots, v_{6}$ are the vertices of the Theta graph T_{α} with centre v_{0} and

$$
E\left(T_{\alpha}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq 5\right\} \cup\left\{v_{0} v_{1}, v_{0} v_{4}, v_{1} v_{6}\right\}, \text { then }\left|V\left(T_{\alpha}\right)\right|=7 \text { and }\left|E\left(T_{\alpha}\right)\right|=8 .
$$

Let G_{s} be the graph obtained from T_{α} after switching the vertex v_{i}. In T_{α}, consider only three vertices be v_{2}, v_{3} and v_{5}. Clearly $\left|V\left(G_{s}\right)\right|=7$.

We define vertex labeling $f: V\left(G_{s}\right) \rightarrow\{1,2,3, \ldots, 7\}$ as follows.
Case (i): switching of the vertex v_{0}
We define, $f\left(v_{0}\right)=6, f\left(v_{1}\right)=2, f\left(v_{2}\right)=4, f\left(v_{3}\right)=3, f\left(v_{4}\right)=7, f\left(v_{5}\right)=5, f\left(v_{6}\right)=1$.
Case (ii): switching of the vertex ν_{3}
We define, $f\left(v_{0}\right)=6, f\left(v_{1}\right)=3, f\left(v_{2}\right)=7, f\left(v_{3}\right)=4, f\left(v_{4}\right)=2, f\left(v_{5}\right)=5, f\left(v_{6}\right)=1$.
Case (iii): switching of the vertex ν_{4}
We define, $f\left(v_{0}\right)=5, f\left(v_{1}\right)=4, f\left(v_{2}\right)=6, f\left(v_{3}\right)=2, f\left(v_{4}\right)=3, f\left(v_{5}\right)=1, f\left(v_{6}\right)=7$.
Case (iv): switching of the vertex v_{5}
We define, $f\left(v_{0}\right)=6, f\left(v_{1}\right)=3, f\left(v_{2}\right)=7, f\left(v_{3}\right)=4, f\left(v_{4}\right)=2, f\left(v_{5}\right)=5, f\left(v_{6}\right)=1$.
Thus in both cases, we have $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for $i, j=0,1,2$.
Hence the graph G_{s} admits 3-equitable prime cordial graph.
Note that switching of vertices v_{3}, v_{4} and v_{5} are as similar as the switching of vertices v_{2}, v_{1} and v_{6} respectively.

Figure 4: The switching of the vertex v_{5} in T_{α} is a 3-equitable prime cordial graph
Theorem 2.4. The fusion of any two vertices in the Theta graph T_{α} is a 3-equitable prime cordial graph.
Proof: If $v_{0}, v_{1}, v_{2}, \ldots, v_{6}$ be the vertices of the Theta graph T_{α} with centre v_{0}
$E\left(T_{\alpha}\right)=\left\{v_{i} v_{i+1}: 0 \leq i \leq 6\right\}$, then $\left|V\left(T_{\alpha}\right)\right|=7$ and $\left|E\left(T_{\alpha}\right)\right|=8$.
Let G be a graph obtained by fusion of any two vertices in T_{α}. Then $|V(G)|=6$ and $|E(G)|=7$. We define vertex labeling $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ as follows.

For the graph G the possible pairs of labels of adjacent vertices are $(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)$

Out of these pairs, only the pairs $(2,4),(3,6)$ yields the edge label value as 0 , the pairs $(1,6),(2,3),(4,5),(5,6)$ yields the edge label value as 1 and the remaining possible labeling of pairs $(1,3),(1,5),(3,5)$ yields the edge label value as 2 .

In view of the labeling pattern defined above we have $e_{f}(0)=2, e_{f}(1)=3, e_{f}(2)=2$.
Then $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for $i, j=0,1,2$.
Hence the graph G admits 3-equitable prime cordial graph.

Figure 5: The fusion of the vertex v_{2} and v_{3} in T_{α} is a 3-equitable prime cordial graph
Therom 2.5. The graph G obtained by path union of two copies of theta graph T_{α} is a 3-equitable prime cordial graph.
Proof: Let G be the graph obtained by path union of two copies of Theta graph T_{α} and $T_{\alpha}{ }^{\prime}$ respectively. Let $u_{0}, u_{1} \ldots, u_{6}$ be the vertices of first copy T_{α} and $v_{0}, v_{1}, \ldots, v_{6}$ be the vertices of second copy $T_{\alpha}{ }^{\prime}$. Note that $V(G)=V\left(T_{\alpha}\right) \cup V\left(T_{\alpha}{ }^{\prime}\right)$ and $E(G)=E\left(T_{\alpha}\right) \cup E\left(T_{\alpha}{ }^{\prime}\right) \cup\left\{u_{k} v_{k}\right\}$.

Then $|V(G)|=14$ and $|E(G)|=17$.
We define vertex labeling $f: V\left(G_{s}\right) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ such that
$f\left(u_{0}\right)=3, f\left(u_{1}\right)=1, f\left(u_{2}\right)=2, f\left(u_{3}\right)=4, f\left(u_{4}\right)=5, f\left(u_{5}\right)=10, f\left(u_{6}\right)=12$
and $f\left(v_{0}\right)=9, f\left(v_{1}\right)=7, f\left(v_{2}\right)=6, f\left(v_{3}\right)=8, f\left(v_{4}\right)=11, f\left(v_{5}\right)=13, f\left(v_{6}\right)=14$.
In view of the labeling pattern defined above we have $e_{f}(0)=6, e_{f}(1)=6, e_{f}(2)=5$.
Thus we have $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for $i, j=0,1,2$.
Hence G is a 3-equitable prime cordial graph.

Figure 6: The path union of two copies of T_{α} is a 3-equitable prime cordial graph
Theorem 2.6. $S\left(n \cdot T_{\alpha}\right)$ is a 3-equitable prime cordial graph, where n is even.
Proof: Let G be a graph obtained by replacing each vertices of $K_{1, n}$ except the central vertex by the Theta graph T_{α}, where n is any positive integer, i.e. $G=S\left(n \cdot T_{\alpha}\right)$.

We fix the position of the vertices in each copies of Theta graph as follows:

Figure 7: Theta graph
Let u_{0} be the central vertex of the graph G, where u_{0} is an apex vertex of the orginal graph $K_{1, n}$.
We denote $u_{i}^{j}\left(\operatorname{or} v_{i}^{j}\right)$ is the $i^{\text {th }}$ vertex in the $j^{\text {th }}$ copy of T_{α}, where $1 \leq i \leq 7 ; 1 \leq j \leq n$.
Then
$V(G)=\left\{u_{i}^{j}, v_{i}^{k} ; 1 \leq i \leq 7,1 \leq j \leq \frac{n}{2}, \frac{n}{2}+1 \leq k \leq n\right\}$
Now we shall join each $i^{\text {th }}$ vertex of T_{α} to the apex vertex u_{0}, where i is any fixed integer between 1 and 7. Then
$|V(G)|=7 n+1$ and $|E(G)|=9 n$.
We shall define the labeling function $f:|V(G)| \rightarrow\{1,2, \ldots, 7 n+1\}$ as follows:
Let $f\left(u_{0}\right)=1$.
Case 1: when $j=1,2, \ldots, \frac{n}{2}$
$f\left(u_{i}^{j}\right)=\left\{\begin{array}{l}2 i+1+14(j-1) ; 1 \leq i \leq 4 \\ 2 i-8+14(j-1) ; 5 \leq i \leq 7\end{array}\right.$
Case 2: when $j=\frac{n}{2}+1, \ldots, n$
$f\left(v_{i}^{j}\right)=\left\{\begin{array}{l}11+2(i-1)+14\left(j-\frac{n}{2}-1\right) ; 1 \leq i \leq 3 \\ 2 i+14\left(j-\frac{n}{2}-1\right) ; 4 \leq i \leq 7\end{array}\right.$
Thus we have $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for $i, j=0,1,2$.
Hence the above labeling pattern gives 3 -equitable prime cordial labeling to the grpah G and so it is a 3 -equitable prime cordial graph.

Figure 8: A open star of 6 copies of T_{α} and its prime cordial labeling.

3. Concluding remarks:

In this paper, we investigated the 3-equitable prime cordial labeling of theta graph. We also proved that the 3-equitable prime cordial labeling in the context of some graph operations namely duplication, switching, fusion, path union of two copies of Theta graph and the open star of Theta graph. However we proved that the path union of only two copies of Theta graph is a 3equitable prime cordial graph. An interesting open area of research is to extend the arbitrary number of path union of Theta graphs.

References

[1]. David M. Burton, Elementary Number theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
[2]. I.Cahit, On Cordial and 3-equitable Labelings of Graphs, Utilitas Math, 37(1990), 189198.
[3]. J.A.Gallian, A dyanamic survey of graph labeling, Electronic Journal of Combinatorics, 16(2016) \# Ds6.
[4]. F. Harary, Graph Theory, Addition-Wesley, Reading Mass, 1972.
[5]. S. Murugesan, 3-equitable Prime cordial Labeling of Graphs, International Journal of Applied Information Systems, 5(2013), 1-4.
[6]. M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of Graphs, Journal of Indian Academy of Mathematics, 27 (2005) 373-390.

