INVERSE (G, D)-NUMBER OF A GRAPH

S. KALAVATHI ${ }^{1}$, K. PALANI ${ }^{2}$
${ }^{1}$ Research Scholar
Register Number 11503
Department of Mathematics
Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli-627 012
Tamil Nadu, India
${ }^{2}$ Associate Professor
Department of Mathematics
A.P.C Mahalaxmi College for Women, Thoothukudi.
Affiliated with Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli-627 012
Tamil Nadu, India

Abstract

Let S be a minimum (G, D)-set in a graph G. If $V-S$ contains $a(G, D)$-set S^{-1} of G, then S^{-1} is called an inverse (G, D)-set with respect to S. If $V-S$ has no (G, D)-set, then inverse (G, D)-set does not exist in G. An inverse (G, D)-set S is called a minimum inverse (G, D)-set, if S consists of minimum number of vertices among all inverse (G, D)-sets. The number of vertices in a minimum inverse (G, D)-set is defined as the inverse (G, D)-number of a graph G, and is denoted by $\gamma_{G}{ }^{-1}(G)$. If G has no inverse (G, D)-set, then it is defined as $\gamma_{G}{ }^{-1}(G)=\infty$. In this paper, we initiate the study of this parameter.

Keywords: Domination, Geodomination, (G, D)-set, Inverse (G, D)-set and Inverse (G, D)-number.
AMS Subject Classification: 05C69

1. Introduction: Throughout this paper, we consider the graph G as a finite undirected simple graph with no loops and multiple edges. The study of domination in graphs was begun by Ore and Berge[5]. Let $\mathrm{G}=(\mathrm{V}$, E) be any graph. A dominating set of a graph G is a set D of vertices of G such that every vertex in V-D is adjacent to at least one vertex in D and the minimum cardinality among all dominating sets is called the domination number $\gamma(\mathrm{G})$ of G . The concept of geodominating(or geodetic) set was introduced by Buckley and Harary in [1] and Chartrand, Zhang and Harary in [2], [3], [4]. Let $u, v \in V(G)$. A u-v geodesic is a u-v path of length $d(u, v)$. A vertex $x \in V(G)$ is said to lie on a $u-v$ geodesic P if x is a vertex of P including the vertices u and v. A set S of vertices of G is a geodominating(or geodetic) set if every vertex of G lie on an $x-$ y geodesic for some x, y in S . The minimum cardinality of a geodominating set is the geodomination(or geodetic) number of G and is denoted as $g(G)[1],[2],[3],[4] . \quad A(G, D)$-set of G is a subset S of $V(G)$ which is both a dominating and geodetic set of G. A (G, D)-set S of G is said to be a minimal (G, D)-set of G if no proper subset of S is a (G, D)-set of G. The minimum cardinality of all (G, D)-sets of G is called the (G, D)number of G and it is denoted by $\gamma_{\mathrm{G}}(\mathrm{G})$. Any (G, D)-set of G of cardinality γ_{G} is called a γ_{G}-set of $\mathrm{G}[8,9$, 10]. A γ_{G}-required vertex is a vertex which lie in every (G, D)-set of G.

The concept of inverse domination was introduced by Kulli in [7]. Let D be a γ-set of G. A dominating set D^{\prime} contained in $V-D$ is called an inverse dominating set of G with respect to D . Motivated by this definition, in this paper, we introduce the new parameter inverse (G,D)-number, investigate its properties and find its value for some standard graphs.

Proposition 1.1:[8] For $n>5, \gamma_{G}\left(C_{n}\right)=\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Remark 1.2:[6] (G, D)-number of a disconnected graph is the sum of (G, D)-number of its components.

2. Main Results

Definition 2.1: Let S be a minimum (G, D)-set in a graph G. If $V-S$ contains a (G, D)-set S^{-1} of G, then S^{-1} is called an inverse (G, D)-set with respect to S. If $V-S$ has no (G, D)-set, then inverse (G, D)-set does not exist in G.

Definition 2.2: An inverse (G, D)-set S is called a minimum inverse (G, D)-set, if S consists of minimum number of vertices among all inverse (G, D)-sets.

Definition 2.3: The number of vertices in a minimum inverse (G, D)-set is defined as the inverse (G, D)number of a graph G, and is denoted by $\gamma_{G}{ }^{-1}(G)$. If G has no inverse (G, D)-set, then it is defined as $\gamma_{G}{ }^{-1}(G)=\infty$.
Observation 2.4: If a graph G has isolated vertex, pendant vertex or extreme vertex, then $\gamma_{G}{ }^{-1}(G)=\infty$.
Example 2.5: (i) $\gamma_{G}{ }^{-1}\left(P_{n}\right)=\infty$. (ii) Consider the graph G as in figure (2.1).

G:

Figure (2.1)

In $G, S_{1}=\left\{v_{1}, v_{3}\right\}$ and $S_{2}=\left\{v_{2}, v_{4}\right\}$ are minimum (G, D)-sets. Their corresponding inverse (G, D)-sets are $S_{1}^{-1}=\left\{v_{2}, v_{4}\right\}$ and $S_{2}^{-1}=\left\{v_{1}, v_{3}\right\}$ with respect to S_{1} and S_{2} respectively. Therefore, $\gamma_{G}(G)=2$ and $\gamma_{G}{ }^{-1}(G)=2$.

Proposition 2.6: A graph G in which $\gamma_{G}{ }^{-1}(G)$ exists if and only if G has no γ_{G}-required vertex.
Proof: Let G be a graph with $\gamma_{G}{ }^{-1}(G)$ exist. Let S be a γ_{G}-set and S^{-1} be a $\gamma_{G}{ }^{-1}$-set of G. Suppose G contains a γ_{G}-required vertex u. Then, u lies in every γ_{G}-set of G and hence, $u \in S$ and $u \in S^{-1}$. Which is in contradiction to $S^{-1} \subseteq V-S$.
Conversely, if G has a γ_{G}-required vertex. Then, obviously, $V-S$ does not contain any (G, D)-set for all minimum (G, D)-set S of G. Therefore, inverse (G, D)-set does not exists. Hence, $\gamma_{G}{ }^{-1}(G)=\infty$.

Proposition 2.7: Given a positive integer $k \geq 2$, there exist a graph G with $\gamma_{G}{ }^{-1}(G)=k$.
Proof: Graph G is given in the following figure (2.2).
Clearly, $S=\{a, b\}$ is a γ_{G}-set of G and so $\gamma_{G}(G)=2$. Here, $V(G)-S=\left\{v_{i}: 1 \leq i \leq k\right\}$. For $k \geq 2, V(G)-$ S is a (G, D)-set of G with respect to S. Thus, $V(G)-S$ is a $\gamma_{G}{ }^{-1}$-set of G.
Therefore, $\gamma_{G}{ }^{-1}(G)=|V(G)-S|=k$.

Figure (2.2)
Observation 2.8: (i) For any graph $G, \gamma_{G}(G) \leq \gamma_{G}{ }^{-1}(G)$.
(ii) For any graph $G, 4 \leq \gamma_{G}(G)+\gamma_{G}^{-1}(G) \leq n$.

Lower bound holds for C_{4} and upper bound holds for the graph in figure (2.2).
(iii) $\gamma_{G}{ }^{-1}\left(C_{3}\right)=\gamma_{G}{ }^{-1}\left(C_{5}\right)=\infty$.

Proposition 2.9: $\gamma_{G}^{-1}\left(W_{n}\right)=\left\{\begin{array}{cl}\frac{n-1}{2} & \text { if } n \text { is odd } \\ \infty & \text { otherwise. }\end{array}\right.$
Proof: Let $W_{n} \cong C_{n-1}+K_{1}$.
Case 1: n is odd
Since n is odd, $n-1$ is even. Let S be a γ_{G}-set of W_{n}. Then, $S^{-1}=\left\{u_{i+1}: u_{i} \in S\right\}$ or $\left\{u_{i-1}: u_{i} \in S\right\}$ is a minimum inverse (G, D)-set of W_{n}. Therefore, $\gamma_{G}{ }^{-1}\left(W_{n}\right)=\frac{n-1}{2}$.
Case 2: n is even
In this case, W_{n} contains exactly one (G, D)-set. Thus, $\gamma_{G}{ }^{-1}\left(W_{n}\right)$ does not exists and so, $\gamma_{G}{ }^{-1}\left(W_{n}\right)=\infty$.
Proposition 2.10: For $n>5, \gamma_{G}{ }^{-1}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Proof: Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}$.
When $n \equiv 0(\bmod 3), C_{n}$ contains exactly three disjoint (G, D)-sets of same order.
When $n \not \equiv 0(\bmod 3), C_{n}$ contains exactly two disjoint (G, D)-sets and their cardinalities are same. Therefore, $\gamma_{G}{ }^{-1}\left(C_{n}\right)$ exist and hence, $\gamma_{G}{ }^{-1}\left(C_{n}\right)=\gamma_{G}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right]$ (By Proposition 1.1).
Remark 2.11: Let $G_{1}, G_{2}, \ldots, G_{k}$ be the k components of a graph G. Let $S_{1}, S_{2}, \ldots, S_{k}$ be γ_{G}-sets and $S_{1}{ }^{-1}, S_{2}{ }^{-1}, \ldots, S_{k}{ }^{-1}$ be $\gamma_{G}{ }^{-1}$-sets of $G_{1}, G_{2}, \ldots, G_{k}$ with respect to $S_{1}, S_{2}, \ldots, S_{k}$ respectively. Then, $S_{1}{ }^{-1} \cup$ $S_{2}{ }^{-1} \cup \ldots \cup S_{k}{ }^{-1}$ is a $\gamma_{G}{ }^{-1}$-set of G. Therefore, $\gamma_{G}{ }^{-1}(G)=\sum_{i=1}^{k} \gamma_{G}{ }^{-1}\left(G_{i}\right)$.

Theorem 2.12: Let $G_{1}, G_{2}, \ldots, G_{k}$ be the k components of a graph G. Then, $\gamma_{G}(G)=\gamma_{G}{ }^{-1}(G)$ if and only if $\gamma_{G}\left(G_{i}\right)=\gamma_{G}{ }^{-1}\left(G_{i}\right)$ for $i=1$ to k.

Proof: Let $G_{1}, G_{2}, \ldots, G_{k}$ be the k components of G. Then, by Remark (1.2), $\gamma_{G}(G)=\sum_{i=1}^{k} \gamma_{G}\left(G_{i}\right)$.

By Remark (2.11), $\gamma_{G}{ }^{-1}(G)=\sum_{i=1}^{k} \gamma_{G}{ }^{-1}\left(G_{i}\right)$.
Thus, trivially, $\gamma_{G}(G)=\gamma_{G}{ }^{-1}(G)$ if $\gamma_{G}\left(G_{i}\right)=\gamma_{G}{ }^{-1}\left(G_{i}\right)$ for $i=1$ to k.
Conversely, assume that $\gamma_{G}(G)=\gamma_{G}{ }^{-1}(G)$. We have, $\gamma_{G}\left(G_{i}\right) \leq \gamma_{G}{ }^{-1}\left(G_{i}\right)$ for $i=1$ to k.
Suppose, $\gamma_{G}\left(G_{i}\right)<\gamma_{G}{ }^{-1}\left(G_{i}\right)$ for some i.
Then, we must have $\gamma_{G}\left(G_{j}\right)>\gamma_{G}{ }^{-1}\left(G_{j}\right)$ for some $\mathrm{j} \neq i$. Which is impossible.
Hence, $\gamma_{G}\left(G_{i}\right)=\gamma_{G}{ }^{-1}\left(G_{i}\right)$ for $i=1$ to k.
Theorem 2.13: $\gamma_{G}{ }^{-1}\left(G_{1} \cup G_{2}\right)=\gamma_{G}{ }^{-1}\left(G_{1}\right)+\gamma_{G}{ }^{-1}\left(G_{2}\right)$.
Proof: The proof follows from the fact that $\gamma_{G}{ }^{-1}$-set of $G_{1} \cup G_{2}$ is the union of $\gamma_{G}{ }^{-1}$-set of G_{1} and $\gamma_{G}{ }^{-1}$-set of G_{2}.

Theorem 2.14: $\gamma_{G}{ }^{-1}($ Cube $)=2$.
Proof: Cube is a 3-regular graph with 8 vertices. $V($ Cube $)=\left\{v_{i}: 1 \leq i \leq 8\right\}$.

Figure (2.3)

Let $S=\left\{v_{1}, v_{6}\right\}$. Then, S dominate and geodominate all the vertices of $V-S$. So, S is a γ_{G}-set.
Therefore, $\gamma_{G}($ Cube $)=2$. Now, $V-S=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{7}, v_{8}\right\}$. Clearly, $S^{-1}=\left\{v_{2}, v_{5}\right\}$ is a minimum inverse (G, D)-set of Cube with respect to S. Hence, $\gamma_{G}^{-1}($ Cube $)=\left|S^{-1}\right|=2$.

Theorem 2.15: $\gamma_{G}{ }^{-1}($ Octahedron $)=2$.
Proof: Octahedron is a 4-regular graph with 6 vertices. $V($ Octahedron $)=\left\{v_{i}: 1 \leq i \leq 6\right\}$.

Figure (2.4)

Let $S=\left\{v_{1}, v_{6}\right\}$. Then, S dominate and geodominate all the vertices of $V-S$. So, S is a γ_{G}-set.
Therefore, $\gamma_{G}($ Octahedron $)=2$. Now, $V-S=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. So, $S^{-1}=\left\{v_{2}, v_{5}\right\}$ is a minimum inverse (G, D)-set of Octahedron with respect to S. Hence, $\gamma_{G}{ }^{-1}($ Octahedron $)=\left|S^{-1}\right|=2$.

Theorem 2.16: $\gamma_{G}{ }^{-1}($ Icosahedron $)=2$.
Proof: Icosahedron is a 5-regular graph with 12 vertices. V (Icosahedron) $=\left\{v_{i}: 1 \leq i \leq 12\right\}$.

Figure (2.5)

Let $S=\left\{v_{1}, v_{4}\right\}$. Then, S dominate and geodominate all the vertices of $V-S$. So, S is a γ_{G}-set.
Therefore, γ_{G} (Icosahedron) $=2$. Now, $V-S=\left\{v_{2}, v_{3}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}\right\}$. So, $S^{-1}=\left\{v_{7}, v_{10}\right\}$ is a minimum inverse (G, D)-set of Icosahedron with respect to S. Hence, $\gamma_{G}{ }^{-1}$ (Icosahedron) $=\left|S^{-1}\right|=2$.

References:

[1] Buckley F, Harary F and Quintas V L, Extremal results on the geodetic number of a graph, Scientia, volume A2 (1988),
17- 26.
[2] Chartrand G, Harary F and Zhang P, Geodetic sets in graphs, Discussiones Mathematicae Graph theory, 20 (2000),
129-138e.
[3] Chartrand G, Harary F and Zhang P, On the Geodetic number of a graph, Networks, Volume 39(1) (2002), 1-6.
[4] Chartrand G, Zhang P and Harary F, Extremal problems in Geodetic graph Theory, Congressus Numerantium 131 (1998), 55-66.
[5] Haynes T W, Hedetniemi S T and Slater P J, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
[6] Kalavathi S and Palani K, (G, D)-Bondage and (G, D)-Nonbondage Number of a Graph, International Journal of Mathematics Trends and Technology, ISSN: 2231-5373, Volume 57, Issue 1-May 2018, 67-72.
[7] Kulli V R and Sigarkanti A, Inverse domination in graphs, Nat. Acad. Sci-letters, 14:473-475, 1991.
[8] Palani K and Nagarajan A, (G,D)-Number of a graph, International Journal of Mathematics Research, Volume 3, Number 3 (2011), 285-299.
[9] Palani K and Kalavathi S, (G,D) - Number of some special graphs, International Journal of Engineering and Mathematical Sciences, January-June 2014, Volume 5, Issue-1, pp.7-15, ISSN(Print) - 2319 - 4537, (Online) - 2319-4545.
[10] Palani K , Nagarajan A and Mahadevan G, Results connecting domination, geodetic and (G,D)- number of graph, International Journal Of Combinatorial graph theory and applications, Volume 3, No.1, January June (2010)(pp. $51-59)$.

