
© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807242 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 658

A Low Power Way Tag Based L2 Replacement Architecture

for a Performance Degradation Tolerance Cache

KARKAGARI ANJALI1, G. KUMARASWAMY2, M. PREETHI3

1PG Scholar, CMR Institute of Technology, Hyderabad, TS, India.
2Assistant Professor, CMR Institute of Technology, Hyderabad, TS, India.
3Assistant Professor, CMR Institute of Technology, Hyderabad, TS, India.

Abstract: Caches in the processor are designed as a hierarchy as Level 1(L1), Level 2(L2) or more. A

cache memory which has the high speed in data retrieval also have functional fault. The processor when it

requires data or writes the data from/to memory, cache performs its operation, upper-level cache L1is

checked for the availability of address of the requested data. If the address is found, data is sent to the

processor. Otherwise it checks in lower level cache L2, L3 and then in slow memory or hard disk. As a

result, functional faults exist making data faulty in the processor. These functional faults can be converted

into performance faults by making the electronic chip still marketable. To, check for the faults BIST or ECC

is used.

This paper proposed for a cache redesign, A Performance Degradation Tolerance Way Tagged

Cache is used where functional faults are converted into performance faults at the cost of performance

degradation reducing fault rate. Power of the way tag cache is also reduced when compared to cache with

increased hardware overhead.

Keywords: Cache memory, PDT, Way Tag, Memory Hierarchy, BIST, fault.

1. INTRODUCTION:

PDT technique became an alternative to

test a reliable system with performance

degradation. High performance processors have

on chip multi-level cache for data consistency by

employing write through and write back policies.

By write-back policy, a cache block which is

modified is copied and sent to its corresponding

lower level cache if the block is to be replaced.

Under write-through policy, if the cache block is

modified, cache block is updated immediately

whether the cache block is evicted or not. The

write-through policy becomes an advantage as it

maintains identical data copies at all cache

hierarchy levels throughout their execution. For

data consistency among the memory hierarchy at

architecture level, system should be protected

from soft errors. Write through policy is tolerant

to soft errors at all levels of abstraction. In this

paper, we propose a new cache architecture,

referred to as way-tagged cache, to improve the

energy efficiency of write-through cache systems

with minimal area overhead and no performance

degradation. Consider a two-level cache

hierarchy, where the L1 data cache is write-

through and the L2 cache is inclusive for high

performance. It is observed that all the data

residing in the L1 cache will have copies in the L2

cache. In addition, the locations of these copies in

the L2 cache will not change until they are evicted

from the L2 cache. Thus, we can attach a tag to

each way in the L2 cache and send this tag

information to the L1 cache when the data is

loaded to the L1 cache. By doing so, for all the

data in the L1 cache, we will know exactly the

locations (i.e., ways) of their copies in the L2

cache. During the subsequent accesses when there

is a write hit in the L1 cache (which also initiates

a write access to the L2 cache under the write-

through policy), we can access the L2cache in an

equivalent direct-mapping manner because the

way tag of the data copy in the L2cache is

available. As this operation accounts for the

majority of L2cache accesses in most

applications, the energy consumption of L2 cache

can be reduced significantly.

2.CACHE MEMORY:

Cache memory is the quick access

memory in which processor stores current

programs that are retrieved from primary memory.

Time efficiency of utilizing cache comes

from the locality of access to data that is seen

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807242 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 659

amid program execution. We see here time and

space locality:

Time locality comprises to utilize similar

instructions and data in programs amid

neighbouring time interims as many times.

Space Locality is a tendency to store instructions

and data utilized as a part of a program in short

separations of time under neighbouring locations

in the main memory.

A cache memory is kept up by an

exceptional processor subsystem called cache

controller.

Read Miss and Read Hit implementation

in cache is shown in figure 2.1 and figure 2.2

Figure 2.1 Read implementation in cache memory

on Hit

Figure 2.2 Read Implementation in cache memory

on Miss

3.PDT CACHE:
3.1 Cache Access Mechanism:

 Cache memory checks the processor

requested data by the tag address of the data in the

cache.Cache returns the data if it is hit and if it is

a miss it checks in lower level cache(L2) and then

in memory. When the data is returned to processor

from the memory, data and address are written

into cache.

PDT cache is implemented, when the

processor requests the data, cache gets accessed.

The respective memory address is searched level I

(L1) cache. Parallelly, this address is searchedin

lower level(I+1) (L2) cache, assuming to be

correct. The data retrieved from L2 cache is also

written into L1 cache. The time required for

waiting for the data access in the level(I+1) cache

is hidden by the time required for pipeline

execution of instruction.

3.2 Cache Access State Diagram:

The state diagram of PDT cache

implementation is shown in figure 3.1.Req_P is

raised when the processor is requesting a data

from the memory. FMOut is raised for checking

the cache word in L1 cache is correct or not. It is

deserted if the cache word is correct. If it is a miss

L2 cache is accessed. Read and Write operations

are as follows:

Figure 3.1 The state diagram of PDT cache

Read Hit: This happens if the tag address is

matched to access the cache word in L1 cache and

goes to IDLE state after returning the word to the

processor.

Read Miss: In the L1 cache, if it is a miss of

requested, Read Miss state is done. In following

cycle, cache is in Wait Read state until Read Miss

asserted when the requested data is matched by

the lower level cache and cache goes to Read Data

state to get and to retrieve the data to the

processor.

Write Hit and Write Miss: At all levels of cache

data has to be written and write through policy is

used here. Write hit and Write miss differs in

whether to allocate a new word or not. After a

hit/miss condition, cache controller sends the

signal whether to write or not in WaitWrite state.

until ReadyM is raised. This signal indicates when

to write the data to L1 cache memory and after

writing caches go to WriteData state to write data

inthe current level cache. IDLE state is accessed

by the cache in the next cycle. If the incorrect

word is retrieved functional correctness is gained

at L2 cache as the level(i+1) is protected and

correct, since the data is stored in level I and level

(i+1), the correct word can be retrieved/written

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807242 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 660

from/to lower level cache memory assuming L1

cache to be faulty.

4. WAY TAG CACHE:

4.1 Introduction:

Many high-performance processors have a

MULTI-LEVEL on-chip cache systems for high-

performance. In the memory hierarchy, for data

consistency write-through and write-back policies

are commonly employed. Write-back policy,

modifies cache block and that particular block is

copied back to its corresponding lower level cache

only when the block is about to be replaced. In

this, all copies of a cache block are updated

immediately after the cache block is modified at

the current cache access cycle, even though the

block might not be removed. Write through policy

has a record of all identical data copies at all

levels of the cache hierarchy throughout most of

their lifetime of execution. Soft errors have

emerged as a major reliability issue in on-chip

cache systems and write through policy has

become essential for CMOS technology as single

event multi-bit errors are increasing. It is an

effective solution is to keep data consistent among

different levels of the memory hierarchy at an

architecture level to prevent the system from soft

errors. By the immediate update in the cache

write-through policy, it is inherently tolerant to

soft errors because the data at all related levels of

the cache hierarchy are always kept consistent.

Consequently, many high-performance

microprocessor designs have adopted the write-

through policy.

To make the memories free from soft

errors, we enable write through policy and results

in large energy overhead. Because, the write-

through policy, experiences more access during

write operations in the lower level cache.

Consider a two-level (i.e., Level-1 and Level-2)

cache system for example. L2 cache is not

accessed if the L1 data cache implements the

write-back policy with a write hit. For write

through in L1, both L1 and L2 caches need to be

accessed for every write operation. Consequently,

the write-through policy results in more write

accesses in the L2 cache, which increases the

energy consumption of the cache system. Which

results in Power dissipation as one of the critical

issues in cache design.

A new cache architecture, a way-tagged

cache, to improve the efficiency of write-through

cache systems with minimal area overhead and no

performance degradation. Consider a two-level

cache hierarchy, where the L1 data cache is write-

through and the L2 cache is inclusive for high

performance and all the data residing in the L1

cache have copies in the L2 cache. The locations

of the copies in the L2 cache will not change

untilthey are evicted from the L2 cache. When the

data is loaded in L1 cache, we attach a tag to each

way in the L2 cache and send this tag information

to the L1 cache. So, by this process, for every data

in the L1 cache, we will have exactly the locations

(i.e., ways) of their copies in the L2 cache. When

the write hit is accessed in L1 cache, L2 cache is

accessed by direct mapping by the available way

tag of the data in L2. This accounts for L2 access

parallelly with L1, power consumption of L2 may

be reduced.

4.2 Way Tagged Cache Architecture:

To improve power efficiency, a way-

tagged cache is implemented that exploits the way

information in L2 cache. A conventional set-

associative cache system is considered, all the

ways in L2 cache are accessed parallelly when the

L1 data cache loads/writes data from/into the L2

cache for performance consideration. The figure

4.1 below illustrates the architecture of the two-

level cache. L2 cache always has a recent copy of

data if the data is modified in L1 as well as L2 in

the write-through policy. This increases the write

accesses to the L2 cache and power consumption.

Figure 4.1 Two-Level Cache Architecture

All the locations or way tags of L1 cache

are copied in the L2 cache and the copy of data is

not changed until it is removed or modified in L2

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807242 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 661

cache. In the proposed way-tagged cache the

number of ways accessed during L2 cache

accesses are greatly reduced. When the L1 cache

receives the data from the L2 cache the way tag of

the data in the L2 cache is also received to the L1

cache and stored. These way tags provide the key

information for the subsequent write accesses to

the L2 cache.

L2 cache is accessed in both read and

write operations of L1 cache and performs

operations in following table 4.1. During the

write-through policy operation, all write

operations of the L1 cache need to access the L2

cache. If it is a write hit in L1, only the particular

way tag data of L2 cache is available. For a write

miss, the requested data is not stored in the L1

cache. Therefore, its corresponding L2 way

information is not available in the way-tag arrays.

As a result, all way tags are activated parallelly in

the L2 cache need. Whether a miss or hit the way-

tag arrays need to be accessed simultaneously

with all L1 write operations in order to avoid

performance degradation and results in power and

hardware overhead. For a read hit of L1 cache,

access of L2 cache is not accessed. But for Read

miss, the corresponding way tag information is

not available in the way-tag arrays and all ways in

the L2 cache are activated simultaneously.

Table 4.1 L2 cache access modes on Operations

in L1 CACHE

4.3 Way Tagged Cache Implementation:

4.3.1 Way Tag Arrays:

Each way tag information in L1cache has

its copy of way tag information in L2 way tag

information and only one-way tag is activated in

L1 as well as L2 cache. So, when the data is

needed for L1, way tag of that particular data and

its data is written into the way tag array. When we

use write through policy, if the data is modified in

L1 cache, it is also updated in L2. The way tag in

the way-tag array as well as the data in the way

tag of L1 cache is read out and given to way-tag

buffer. The data arrays and the way tag arrays of

L1 and L2 share the same address. The

WRITE_W for write/read of data arrays in L1

cache, write/read for way-tag arrays and a control

signal UPDATE is given by cache controller is

shown in following figure 4.2.

Figure 4.2 Way Tagged Array

Due to L1 cache miss, a write access to L1

cache is given and UPDATE signal is raised. This

enables WRITEH_W i.e., a write operation to

way tag arrays. If a STORE signal is given to L1

cache, UPDATE becomes invalid and

WRITEH_W performs read operation to way tag

arrays. During read operation, way tags are not

accessed and this is done by decoder which is

disabled by WRITEH_W signal as shown in table

5.2. When the cache line is removed from L2

cache line becomes INVALID to perform cache

coherence issues. A write or read miss can be

handled by the proposed cache.

Table 4.2 Operations on Way tag arrays

4.3.2 Way Tag Buffer:

Way-tag buffer temporarily stores the way

tags read from the way-tag arrays. The

implementation of the way-tag buffer is shown in

Figure 5.3. It has the same number of entries as

the write buffer of the L2 cache and shares the

control signals with it. Each entryof the way-tag

buffer has bits, where is the line size of way-tag

arrays. An additional status bit indicates whether

the operation in the current entry is a write miss

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807242 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 662

on the L1 data cache. When a write miss occurs,

all the ways in the L2 cache need to be activated

as the way information is not available.

Otherwise, only the desired way is activated. The

status bit is updated with the read operations of

way-tag arrays at the same clock cycle. Similar to

the write buffer of the L2 cache, the way-tag

buffer has separate write and read logic in order to

support parallel write and read operations. The

write operations in the way-tag buffer always

occur one clock cycle later than the corresponding

write operations in the write buffer. This is

because the write buffer, L1 cache, and way-tag

arrays are all updated at the same clock cycle

when a STORE instruction accesses the L1 data

cache Since the way tag to be sent to the way-tag

buffer comes from the way-tag arrays, this tag

will be written into the way-tag buffer one clock

cycle later. Thus, the write signal of the way-tag

buffer can be generated by delaying the write

signal of the write buffer by one clock cycle, as

shown in Figure 4.3.

Figure 4.3 Way Tag Buffer

The proposed way-tagged cache needs to send the

operation stored in the write buffer along with its

way tag to the L2 cache. This requires sending the

data in the write buffer and its way tag in the way-

tag buffer at the same time. However, simply

using the same read signal for both the write

buffer and the way-tag buffer might cause

write/read conflicts in the way-tag buffer. This

problem is shown in Figure 4.4. Assume that at

the Nth clock cycle an operation is stored into the

write buffer while the way-tag buffer isempty. At

the Nth clock cycle, a read signal is sent to the

write buffer to get the operation while its way tag

just starts to be written into the way-tag buffer. If

the same read signal is used by the way-tag

buffer, then read and write will target the same

location of the way-tag buffer at the same time,

causing a data hazard.

Figure 4.4 Timing diagram for Way Tag Buffer

One way to fix this problem is to insert

one cycle delay to the write buffer. This, however,

will introduce a performance penalty. In this

paper, we propose to use a bypass multiplexer

between the way-tag arrays and the L2 cache. If

an operation in the write buffer is ready to be

processed while the way-tag buffer is still empty,

we bypass the way-tag buffer and send the way

tag directly to the L2 cache. The EMPTY signal

of the way-tag buffer is employed as the enable

signal for read operations; i.e., when the way-tag

buffer is empty, a read operation is not allowed.

During normal operations, the write operation and

the way tag will be written into the write buffer

and way-tag buffer, respectively. Thus, when this

write operation is ready to be sent to the L2 cache,

the corresponding way tag is also available in the

way-tag buffer, both of which can be sent

together, as indicated by the Nth cycle in Figure

4.4. With this bypass multiplexer, no performance

overhead is incurred.

4.3.3 Way Decoder:

As the name decoder indicates the

decoding function, it implements the functioning

of decoding way tags and activating the desired

the ways when requestedshown in the figure 5.5.

So, during L2 write the way decoder selects one

way enable signal. It operates parallelly for tag

and data arrays. But for Write or read miss all way

enable signals are asserted. So, the signals write

and readmiss determine the mode of operation of

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807242 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 663

decoder. If both, write miss and read miss occurs,

both the signals are raised to 1 respectively.

Figure 4.5 Way Decoder

4.3.4 Way Register:

The way tags for the way-tag arrays are

provided by the way register. For example, for a

4-way L2 cache, tags have “00”, “01”, “10”, and

“11” which are stored in the way register, each

tagging one way in the L2 cache. When the L1

cache requests for a data from the L2 cache, the

respective way tag from the way register is sent to

the way-tag arrays. So the particular way of

desired data is accessed in L2 cache by making L2

a direct mapped cache with reduced power

consumption and performance overhead.

5.IMPLEMENTATION and RESULTS:

The below figure 5.1 shows the DUT and

its signals clock, reset, address from processor,

from memory, request to memory, data from

memory and valid data, write and read signal, hit,

miss

 Figure 5.1 Top module of Way tag cache

In the table 5.1, Power is reduced in way

tag PDT cache when compared to cache without

way tags

Power in

mW

Total

power

Dynamic

power

Quiescent

Without

way tag

4858.67 240.08 6260.19

With

way tag

4852.72 234.46 6259.86

Table 5.1 Power Comparison

The below figure 5.2 explain the basic

cache operation about how miss and hit is taken.

The processor misses the data in the L1 and L2

cache and finally reads the data from memory and

writes the data into L1 and L2 parallelly. During

this cache operation power is greatly reduced.

Figure 5.2 Top module of the Way tag Cache

6. CONCLUSION:

 A PDT Way tag of cache makes the

cache faster with reduced dynamic power

consumption by making the processor retrieval

speed of data more with increased hardware at L2

cache. This can be extended to phased access

caches and to all cache hierarchy levels.

6.1 Advantages:

• Faulty chip has functional incorrectness, PDT

Techniques reduce PDEF and make the chip

marketable

• Performance Degradation can be reduced

greatly

• Power consumption is reduced

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807242 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 664

6.2 Disadvantages:

• PDT with a way tag is achieved by hardware

overhead

• More computational cycles.

Authors Profile:

Karkagari Anjali, pursuing

M.Tech. in VLSI SYSTEM

DESIGN. She completed her

B.Tech in ECE from Vignan

Institute of Technology and

Science.

G. Kumaraswamy, presently

working as Assistant professor in

CMR Institute of Technology

and Science. He completed his

Masters in VLSI DESIGN from

CVR Engineering College.

REFERENCES:

1. T.-Y. Hsieh, M. A. Breuer, M. Annavaram, S. K.

Gupta, and K.-J. Lee, “Tolerance of performance

degrading faults for effective yield improvement,” in

Proc. Int. Test Conf., 2009, pp. 1–10.

2. S. Almukhaizim, P. Petrov, and A. Orailoglu, “Faults

in processor control subsystems: Testing correctness

and performance faults in the data prefetching unit,” in

Proc. 10th Asian Test Symp., 2001, pp. 319–324.

3. N. Karimi, M. Maniatakos, C. Tirumurti, A. Jas, and

Y. Makris, “Impact analysis of performance faults in

modern microprocessors,” in Proc. IEEE Int. Conf.

Comput. Design, Oct. 2009, pp. 91–96.

4. D. A. Patterson and J. L. Hennessy, Computer

organization and Design: The Hardware/Software

Interface, 5th ed. San Mateo, CA, USA: Morgan

Kaufmann, 2013.

5. H. Lee, S. Cho, and B. R. Childers, “Performance of

graceful degradation for cache faults,” in Proc. IEEE

Comput. Soc. Annu. Symp. VLSI, Mar. 2007, pp. 409–

415.

Ms.M.Preethi, working as an

Assistant professor in CMR

Institute of Technology. She

completed her masters in

embedded systems.

http://www.jetir.org/

