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Abstract  
In modular arithmetic,Montgomery modular 

multiplication,more commonly reffered to as 

Montgomery multiplication, is a method for 

performing fast modular multiplication (MM). 

Modular multiplication is basic operation in public 

key cryptosystems like RSA.Montgomery modular 

multiplication being efficient is widely used.It is 

based on additions and shift operations.The 

proposed multiplier represents the data in binary 

representation and uses carry-save adder (CSA) to 

avoid the carry propagation at each addition 

operation. 

 

We are proposing a Montgomery modular 

multiplication by using parallel prefix adders(PPA) 

which are a special case of carry look ahead 

adders.Parallel prefix adders reduce the carry 

propogation delay as compared to Ripple carry 

adders (RCA) and does not have the huge area 

overhead like Carry look ahead adder(CLA). 
 

Index Terms— carry-save addition, Montgomery 

modular multiplier, public-key cryptosystem. 

 

1. Introduction 
 

In numerous open key cryptosystems, 

particular increase with expansive whole numbers is 

the most basic and slow activity. Along these lines, 

various calculations and equipment execution have 

been exhibited to complete the MM all the more 

rapidly,and Montgomery's calculation is a standout 

amongst the most understood MM calculations. 

Montgomery's calculation decides the remainder 

just relying upon the slightest huge digit of 

operands and replaces the muddled(confused) 

division in traditional MM with a progression of 

moving measured increases to deliver S = A × B × 

R−1 (mod N ), where N is the k-bit  

 

 

modulus, R−1 is the backwards of R modulo N, and 

R = 2k mod N .Therefore, it can be effectively 

executed into VLSI circuits to accelerate the 

encryption/unscrambling process. In any case, the 

three-operand expansion in the cycle circle of 

Montgomery's calculation as appeared in stage 4 of 

Fig. 1 requires long carry propogation for large 

operands in binary representation.To solve this 

issue,several approaches based on carry-save 

addition were proposed to achieve a significant 

speedup of Montgomery MM.Based on the 

representation of input and output operands,these 

approches can be divided into semi-carry save 

(SCS) and full carry-save(FCS) formats. 

 

In semi-carry save format, the input and 

output operands (i.e.,A,B,N and S) of the 

Montgomery MM are reprsented in binary,but 

intermediate results of shifting modular additions 

are in carry-save format to avoid the carry 

propogation.the format conversion from the carry-

save format of the final modular product into its 

binary representation is needed at the end of each 

modular multiplication.The full carry-save format 

maintains the input and output operands (A,B and 

S) in the carry-save format, denoted as 

(AS,AC),(BS,BC) and (SS,SC) respectively. 
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Fig:1 MM algorithm 

2. Modular Multiplication Algorithm 
 

Fig. 2 demonstrates the radix-2 rendition of 

the Montgomery.MM calculation (indicated as MM 

calculation). As specified before, the Montgomery 

particular item S of An and B can be acquired as S 

= A × B × R−1 (mod N ), where R−1 is the opposite 

of R modulo N. That is, R × R−1 = 1 (mod N). Note 

that, the documentation Xi in Fig. 1 demonstrates the I 

th bit of X in double portrayal. Furthermore, the 

documentation Xi: j demonstrates a portion of X from 

the I th bit to j th bit. 
 

2.1.SCS-BasedMontogmery Multiplication 
To avoid the long carry propagation, the 

intermediate result S of shifting modular addition can be 

kept in the carry-save representation (SS, SC), as shown 

in Fig. 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. SCS-based Montgomery multiplication algorithm. 

 

 

 

 

 

 

 

 

 

 

 

                

 

 

 

 

 

 

Fig. 3. SCS-MM-1 multiplier. 

 

Fig: 3 shows the architecture of SCS-based MM 

algorithm which consists of one two-level CSA 

architecture and one format converter. 

 

2.2. FCS-Based Montgomery 

Multiplication 
 

To avoid the format conversion, FCS-based 

Montgomery multiplication maintains A, B, and S in the 

carry-save representations (AS, AC), (BS, BC), and (SS, 

SC).FCS-MM and multiplier, made out of one five-to-

two (three-level) and one four-to (two-level) CSA 

design, individually. The calculation and design of the 

FCS-MM multiplier are appeared in Figs. 4 and 5, 

separately.  

 
 

 

Fig. 4. FCS-MM-1 Montgomery multiplication algorithm. 
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Fig. 5 FCS-MM-1 multiplier. 

 

3. Proposed Montgomery Multiplication 
 

In this,we proposeMontgomery MM 

Algorithm to reduce the critical path delay of 

Montgomery multiplier. In addition, the drawback 

of more clock cycles for completing one 

multiplication is also improved while maintaining 

the advantages of short critical path delay and low 

hardware complexity  
 

3.1 Carry save adder 
 

 A carry-save adder is a type of digital adder, 

used in computer microarchitecture to compute the 

sum of three or more n-bit numbers in binary. It 

differs from other digital adders in that it outputs 

two numbers of the same dimensions as the inputs, 

one which is a sequence of partial sum bits and 

another which is a sequence of carry bits. 

Montgomery multiplication, which depends on the 

rightmost digit of the result, is one solution; though 

rather like carry-save addition itself, it carries a 

fixed overhead, so that a sequence of Montgomery 

multiplications saves time but a single one does not. 

Fortunately exponentiation, which is effectively a 

sequence of multiplications, is the most common 

operation in public-key cryptography. 

 

 
 

Figure 6: The 1-bit carry save adder block is the same circuit as 

a full adder. 

 

3.2 Multilevel Carry-Save Adder 

 

Multilevel CSA use a number of CSAs 

interconnected as a multilevel adder tree to add more 

than one number per cycle. The number of stages of 

CSA algorithm decides the basic cycle time of the 

addition process.                                                                                                             

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 CSA tree 

 

3.3 Critical Path Delay Reduction 
 

The critical path delay of SCS-based multiplier 

can be reduced by combining the advantages of FCS-

MM and SCS-MM. That is, we can pre compute D = B 

+ N and reuse the one-level CSA architecture to perform 

B + N and the format conversion. Fig. 8 and 9 shows the 

modified SCS-based Montgomery multiplication 

(MSCS-MM) algorithm and one possible hardware 

architecture, respectively. The Zero_D circuit in Fig.8 is 

used to detect whether SC is equal to zero, which can be 

accomplished using one NOR operation. The Q_L 

circuit decides the qi value according to step 7 of Fig. 9. 

  

The carry propagation addition operations of B 

+ N and the format conversion are performed by the one-
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level CSA architecture of the MSCS-MM multiplier 

through repeatedly executing the carry-save addition (S 

S, SC) = SS + SC + 0 until SC = 0. In addition, we also 

pre compute Ai and qi in iteration i−1 so that they can be 

used to immediately select the desired input operand 

from 0, N, B, and D through the multiplexer M3 in 

iteration i . Therefore, the critical path delay of the 

MSCS-MM multiplier can be reduced into TMUX4 + TFA. 

 
 

 

Figure 8 MSCS-MM multiplier. 

 

 
 

 

 

Fig.9 Modified SCS-based Montgomery multiplication 

algorithm. 

 

However, in addition to performing the three-input 

carry-save additions [i.e., step 12 of Fig 9] k + 2 times, 

many extra clock cycles are required to perform B + N 

and the format conversion via the one-level CSA 

architecture because they must be performed once in 

every MM. Furthermore, the extra clock cycles for 

performing B + N and the format conversion through 

repeatedly executing the carry-save addition (SS, SC) = 

SS + SC + 0 are dependent on the longest carry 

propagation chain in SS + SC. If SS = 111…1112 and SC 

= 000…0012, the one-level CSA architecture needs k 

clock cycles to complete SS + SC. 
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That is, ∼3k clock cycles in the worst case are 

required for completing one MM. Thus, it is critical 

to reduce the required clock cycles of the MSCS-

MM multiplier. 
 

 

 

 
 

 

Fig. 10 (a) Conventional FA circuit. (b) Proposed CFA circuit. 

(c) Two serial HAs. (d) Simplified multiplexer SM3. 

 

In addition, we also skip the unnecessary 

operations in the for loop (steps 6 to 13) of Fig. 9  

to further decrease the clock cycles for completing 

one Montgomery MM. The crucial computation in 

the for loop of Fig.9 is performing the following 

three-to-two carry-save addition: 

(S S[i + 1], SC[i + 1]) = (S S[i ] + SC[i ] + x )/2 

where the variable x may be 0, N , B, or D 

depending on the values of Ai and qi. Accordingly, 

the signal skipi+1 used in the i th iteration to indicate 

whether the carry-save addition in the (i + 1) th 

iteration will be skipped can be expressed as 

skipi+1 = ∼ ( Ai+1 ∨ qi+1 ∨ SS[i + 1]0) 

where ∨ represents the OR operation. If skipi+1 

generated in the i th iteration is 0, the carry-save 

addition of the (i + 1)th iteration will not be 

skipped. In this case, qi +1 and Ai+1 produced in the i 

th iteration can be stored in FFs and then used to 

fast select the value of x in the (i + 1)th iteration. 

Otherwise (i.e., skipi+1 = 1), SS[i + 1] and SC[i + 1] 

produced in the i th iteration must be right shifted 

by two bit positions and the next clock cycle will go 

to iteration i + 2 to skip the carry-save addition of 

the (i + 1)th iteration. In this situation, not only 

qi+1 and Ai+1 but also qi+2 and Ai+2 must be 

produced and stored to FFs in the i th iteration to 

immediately select the value of x in the (i + 2)th 

iteration without lengthening the critical path. 

Therefore, the selection signals (denoted as ˆ q and 

ˆA) for choosing the proper value of x in the next 

clock cycle must be picked from (qi+1, Ai+1) or 

(qi+2, Ai+2) according to the skipi+1 signal 

produced in the i th iteration. That is, ( ˆ q, ˆA ) = 

(qi+2, Ai+2) if skipi+1 = 1. Otherwise, ( ˆ q, ˆA) = 

(qi+1, Ai+1). 

 

 

 

 

3.4 Proposed Algorithm and Hardware 

Architecture 
 

On the bases of critical path delay reduction, a 

new SCS-based Montgomery MM algorithm (i.e., SCS-

MM-New algorithm shown in Fig. 12) using one-level 

CCSA architecture is proposed to significantly reduce 

the required clock cycles for completing one MM. As 

shown in SCS-MM-New algorithm, steps 1–5 for 

producing ˆB and ˆD are first performed. Note that 

because qi+1 and qi+2 must be generated in the i th 

iteration, the iterative index i of Montgomery MM will 

start from −1 instead of 0 and the corresponding initial 

values of ˆ q and ˆA must be set to 0. Furthermore, the 

original for loop is replaced with the while loop in SCS-

MM-New algorithm to skip some unnecessary iterations 

when skipi+1 = 1. In addition, the ending number of 
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iterations in SCS-MM-New algorithm is changed to k + 

4 instead of k + 1 in Fig. 11. This is because B is 

replaced with ˆB and thus three extra iterations for 

computing division by two are necessary to ensure the 

correctness of Montgomery MM. In the while loop, 

steps 8–12 will be performed in the proposed one-level 

CCSA architecture with one 4-to-1 multiplexer. The 

computations of qi+1, qi+2, and skipi+1 in step 13 and 

the selections of ˆA , ˆ q, and i in steps 14–20 can be 

carried out in parallel with steps 8–12. Note that the 

right-shift operations of steps 12 and 15 will be delayed 

to next clock cycle to reduce the critical path delay of 

corresponding hardware architecture.  

 

The hardware architecture of SCS-MM-New 

algorithm, denoted as SCS-MM-New multiplier, are 

shown in Fig. 12, which consists of one one-level CCSA 

architecture, two 4-to-1 multiplexers (i.e., M1 and M2), 

one simplified. multiplier SM3, one skip detector 

Skip_D, one zero detector Zero_D, and six registers. 

 

 
 

 

Fig. 11. SCS-MM-New algorithm. 

 

 

 

Fig. 12. SCS-MM-New multiplier. 

 

Skip_D is developed to generate skipi+1, ˆ q, and ˆA in 

the i th iteration. Both M4 and M5 in Fig. 12 are 3-bit 2-

to-1 multiplexers and they are much smaller than k-bit 

multiplexers M1, M2, and SM3. In addition, the area of 

Skip_D is negligible when compared with that of the k-

bit one-level CCSA architecture.The select signals of 

multiplexers M1 and M2 in Fig. 12 are generated by the 

control part, which are not depicted for the sake of 

simplicity. 

 
 

Fig. 13. Skip detector Skip_D. 

 

At the beginning of Montgomery multiplication, 

the FFs stored skipi+1, ˆ q, ˆA are first reset to 0 as 

shown in step 1 of SCS-MM-New algorithm so that ˆD = 

ˆB + ˆN can be computed via the one-level CCSA 

architecture. When performing the while loop, the skip 

detector Skip_D shown in Fig. 12 is used to produce 

skipi+1, ˆ q, and ˆA. The Skip_D is composed of four 

XOR gates, three AND gates, one NOR gate, and two 2-

to-1 multiplexers. It first generates the qi+1, qi+2, and 

skipi+1 signal in the i th iteration according to (5), (7), 

and (8), respectively, and then selects the correct ˆ q and 

ˆA according to skipi+1. At the end of the i th iteration, ˆ 

q, ˆA, and skipi+1 must be stored to FFs. In the next 

clock cycle of the i th iteration, SM3 outputs a proper x 

according to ˆ q and ˆA generated in the i th iteration as 

shown in steps 8–11, and M1 and M2 output the correct 

SC and SS according to skipi+1 generated in the i th 

iteration. If skipi+1 = 0, SC _ 1 and SS _ 1 are selected. 

Otherwise, SC _ 2 and SS _ 2 are selected. That is, the 

right-shift 1-bit operations in steps 12 and 15 of SCS-

MM-New algorithm are performed together in the next 

clock cycle of iteration i . In addition, M4 and M5 also 

select and output the correct SC[i ]2:0 and SS[i ]2:0 

according to skipi+1 generated in the i th iteration. Note 

that SC[i ]2:0 and SS[i ]2:0 can also be obtained from 

M1 and M2 but a longer delay is required because they 

are 4-to-1 multiplexers. After the while loop in steps 7–
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21 is completed, ˆ q and ˆA stored in FFs are reset to 0. 

Then, the format conversion in steps 23 and 24 can be 

performed by the SCS-MM-New multiplier similar to 

the computation of ˆD = ˆB + ˆN in steps 3 and 4. 

Finally, SS[k +5] in binary format is outputted when 

SC[k + 5] is equal to 0 . 

4.EXTENSION METHOD  

4.1 Parallel Prefix Adder 

In proposed system, a parallel prefix 

adder(PPA) is used to reduce carry propogation 

delay.koggestone adder is one type of parallel prefix 

adder. VLSI Integer adders find applications in 

Arithmetic and Logic Units (ALUs), microprocessors 

and memory addressing units. Speed of the adder often 

decides the minimum clock cycle time in a 

microprocessor. The need for a Parallel Prefix Adder 

(PPA) is that it is primarily fast when compared with a 

ripple carry adder. PPA is afamily of adders derived 

from the commonly known carry look ahead adders. 

These adders are suited for additions with wider word 

lengths. PPA circuits use a tree network to reduce the 

latency to 2(log) n,where ‘n’ represents the number of 

bits..The Kogge–Stone adder is a parallel prefix form 

carry look-ahead adder. Other parallel prefix adders 

include the Brent-Kung adder, the Han Carlson adder, 

and the fastest known variation, the Lynch-Swartzlander 

Spanning Tree adder.PPA pre-computes and generates 

the signals,it involves less delay . 

4.2 Kogge – Stone Adder(KSA) 

KSA is a parallel prefix form carry look ahead 

adder, it is widely considered as the fastest adder and is 

widely used in the industry for high performance 

arithmetic circuits  

 
 

 

Figure 14 .kogge stone adder example 

 

The Kogge–Stone adder takes more area to 

implement than the Brent–Kung adder, but has a 

lower fan-out at each stage, which increases 

performance for typical CMOS process nodes. 

However, wiring congestion is often a problem for 

Kogge–Stone adders. The Lynch-Swartzlander 

design is smaller, has lower fan-out, and does not 

suffer from wiring congestion; however to be used 

the process node must support Manchester Carry 

Chain implementations. The general problem of 

optimizing parallel prefix adders is identical to the 

variable block size, multi level, carry-skip adder 

optimization problem, a solution of which is found 

in an example of a 4-bit Kogge–Stone adder is 

shown in the diagram. Each vertical stage produces 

a "propagate" and a "generate" bit, as shown. The 

culminating generate bits (the carries) are produced 

in the last stage (vertically), and these bits are 

XOR'd with the initial propagate after the input (the 

red boxes) to produce the sum bits. E.g., the first 

(least-significant) sum bit is calculated by 

XORingthe propagate in the farthest-right red box 

(a "1") with the carry-in (a "0"), producing a "1". 

The second bit is calculated by XORingthe 

propagate in second box from the right (a "0") with 

C0 (a "0"), producing a "0". 

 

5.Simulation And Synthesis Results: 

 

5.1 Synthesis results: 
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Synthesis results of parallel prefix adder is 

shown in figure 5.1.Here a, b are inputs ,sum is output 

and i is 32 bit  integer. 
 

 

Figure 5.1 synthesis results of parallel prefix adder 

5.2 simulation results 
 

Simulation results describe the design summary. 

It contains number of flip-flop, LUT’s, IOBs, timing 

delays are used. 
 

 

Figure 5.2 design summary of carry propagate adder 

 

 

Figure 5.3 design summary of carry save adder 

 

 

 

Figure5.4 design summary of kogg stone adder 

 

 

Figure 5.5 design summary of Montgomery modular 

multiplication 

 

 

Figure 5.6 design summary of Montgomery modular 

multiplication of semi carry save adder 

 

6. CONCLUSION 
 

In this we have analysed an efficient 

Montgomery Modular multiplier using a parallel 

prefix adder.A parallel prefix adder reduces the 

delay of the system which further increases the 

speed of the system. Here  we have used a Kogge-

stone adder which  is one type of parallel prefix 

adder , in which carries are generated fast by 

computing them in parallel at the cost of increased 

area. 
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