
© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 32

AN EFFICIENT MONTGOMERY MODULAR

MULTIPLIER USING PARALLEL PREFIX

ADDER

Sanduri Akshitha, Mrs.P.Navitha (Assistant Professor), Mrs.D.Mamatha (Assistant Professor)

Abstract
In modular arithmetic,Montgomery modular

multiplication,more commonly reffered to as

Montgomery multiplication, is a method for

performing fast modular multiplication (MM).

Modular multiplication is basic operation in public

key cryptosystems like RSA.Montgomery modular

multiplication being efficient is widely used.It is

based on additions and shift operations.The

proposed multiplier represents the data in binary

representation and uses carry-save adder (CSA) to

avoid the carry propagation at each addition

operation.

We are proposing a Montgomery modular

multiplication by using parallel prefix adders(PPA)

which are a special case of carry look ahead

adders.Parallel prefix adders reduce the carry

propogation delay as compared to Ripple carry

adders (RCA) and does not have the huge area

overhead like Carry look ahead adder(CLA).

Index Terms— carry-save addition, Montgomery

modular multiplier, public-key cryptosystem.

1. Introduction

In numerous open key cryptosystems,

particular increase with expansive whole numbers is

the most basic and slow activity. Along these lines,

various calculations and equipment execution have

been exhibited to complete the MM all the more

rapidly,and Montgomery's calculation is a standout

amongst the most understood MM calculations.

Montgomery's calculation decides the remainder

just relying upon the slightest huge digit of

operands and replaces the muddled(confused)

division in traditional MM with a progression of

moving measured increases to deliver S = A × B ×

R−1 (mod N), where N is the k-bit

modulus, R−1 is the backwards of R modulo N, and

R = 2k mod N .Therefore, it can be effectively

executed into VLSI circuits to accelerate the

encryption/unscrambling process. In any case, the

three-operand expansion in the cycle circle of

Montgomery's calculation as appeared in stage 4 of

Fig. 1 requires long carry propogation for large

operands in binary representation.To solve this

issue,several approaches based on carry-save

addition were proposed to achieve a significant

speedup of Montgomery MM.Based on the

representation of input and output operands,these

approches can be divided into semi-carry save

(SCS) and full carry-save(FCS) formats.

In semi-carry save format, the input and

output operands (i.e.,A,B,N and S) of the

Montgomery MM are reprsented in binary,but

intermediate results of shifting modular additions

are in carry-save format to avoid the carry

propogation.the format conversion from the carry-

save format of the final modular product into its

binary representation is needed at the end of each

modular multiplication.The full carry-save format

maintains the input and output operands (A,B and

S) in the carry-save format, denoted as

(AS,AC),(BS,BC) and (SS,SC) respectively.

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 33

Fig:1 MM algorithm

2. Modular Multiplication Algorithm

Fig. 2 demonstrates the radix-2 rendition of

the Montgomery.MM calculation (indicated as MM

calculation). As specified before, the Montgomery

particular item S of An and B can be acquired as S

= A × B × R−1 (mod N), where R−1 is the opposite

of R modulo N. That is, R × R−1 = 1 (mod N). Note

that, the documentation Xi in Fig. 1 demonstrates the I

th bit of X in double portrayal. Furthermore, the

documentation Xi: j demonstrates a portion of X from

the I th bit to j th bit.

2.1.SCS-BasedMontogmery Multiplication
To avoid the long carry propagation, the

intermediate result S of shifting modular addition can be

kept in the carry-save representation (SS, SC), as shown

in Fig. 2.

Fig. 2. SCS-based Montgomery multiplication algorithm.

Fig. 3. SCS-MM-1 multiplier.

Fig: 3 shows the architecture of SCS-based MM

algorithm which consists of one two-level CSA

architecture and one format converter.

2.2. FCS-Based Montgomery

Multiplication

To avoid the format conversion, FCS-based

Montgomery multiplication maintains A, B, and S in the

carry-save representations (AS, AC), (BS, BC), and (SS,

SC).FCS-MM and multiplier, made out of one five-to-

two (three-level) and one four-to (two-level) CSA

design, individually. The calculation and design of the

FCS-MM multiplier are appeared in Figs. 4 and 5,

separately.

Fig. 4. FCS-MM-1 Montgomery multiplication algorithm.

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 34

Fig. 5 FCS-MM-1 multiplier.

3. Proposed Montgomery Multiplication

In this,we proposeMontgomery MM

Algorithm to reduce the critical path delay of

Montgomery multiplier. In addition, the drawback

of more clock cycles for completing one

multiplication is also improved while maintaining

the advantages of short critical path delay and low

hardware complexity

3.1 Carry save adder

 A carry-save adder is a type of digital adder,

used in computer microarchitecture to compute the

sum of three or more n-bit numbers in binary. It

differs from other digital adders in that it outputs

two numbers of the same dimensions as the inputs,

one which is a sequence of partial sum bits and

another which is a sequence of carry bits.

Montgomery multiplication, which depends on the

rightmost digit of the result, is one solution; though

rather like carry-save addition itself, it carries a

fixed overhead, so that a sequence of Montgomery

multiplications saves time but a single one does not.

Fortunately exponentiation, which is effectively a

sequence of multiplications, is the most common

operation in public-key cryptography.

Figure 6: The 1-bit carry save adder block is the same circuit as

a full adder.

3.2 Multilevel Carry-Save Adder

Multilevel CSA use a number of CSAs

interconnected as a multilevel adder tree to add more

than one number per cycle. The number of stages of

CSA algorithm decides the basic cycle time of the

addition process.

Figure 7 CSA tree

3.3 Critical Path Delay Reduction

The critical path delay of SCS-based multiplier

can be reduced by combining the advantages of FCS-

MM and SCS-MM. That is, we can pre compute D = B

+ N and reuse the one-level CSA architecture to perform

B + N and the format conversion. Fig. 8 and 9 shows the

modified SCS-based Montgomery multiplication

(MSCS-MM) algorithm and one possible hardware

architecture, respectively. The Zero_D circuit in Fig.8 is

used to detect whether SC is equal to zero, which can be

accomplished using one NOR operation. The Q_L

circuit decides the qi value according to step 7 of Fig. 9.

The carry propagation addition operations of B

+ N and the format conversion are performed by the one-

http://www.jetir.org/
https://en.wikipedia.org/wiki/Adder_%28electronics%29
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Carry_%28arithmetic%29
https://en.wikipedia.org/wiki/Montgomery_multiplication

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 35

level CSA architecture of the MSCS-MM multiplier

through repeatedly executing the carry-save addition (S

S, SC) = SS + SC + 0 until SC = 0. In addition, we also

pre compute Ai and qi in iteration i−1 so that they can be

used to immediately select the desired input operand

from 0, N, B, and D through the multiplexer M3 in

iteration i . Therefore, the critical path delay of the

MSCS-MM multiplier can be reduced into TMUX4 + TFA.

Figure 8 MSCS-MM multiplier.

Fig.9 Modified SCS-based Montgomery multiplication

algorithm.

However, in addition to performing the three-input

carry-save additions [i.e., step 12 of Fig 9] k + 2 times,

many extra clock cycles are required to perform B + N

and the format conversion via the one-level CSA

architecture because they must be performed once in

every MM. Furthermore, the extra clock cycles for

performing B + N and the format conversion through

repeatedly executing the carry-save addition (SS, SC) =

SS + SC + 0 are dependent on the longest carry

propagation chain in SS + SC. If SS = 111…1112 and SC

= 000…0012, the one-level CSA architecture needs k

clock cycles to complete SS + SC.

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 36

That is, ∼3k clock cycles in the worst case are

required for completing one MM. Thus, it is critical

to reduce the required clock cycles of the MSCS-

MM multiplier.

Fig. 10 (a) Conventional FA circuit. (b) Proposed CFA circuit.

(c) Two serial HAs. (d) Simplified multiplexer SM3.

In addition, we also skip the unnecessary

operations in the for loop (steps 6 to 13) of Fig. 9

to further decrease the clock cycles for completing

one Montgomery MM. The crucial computation in

the for loop of Fig.9 is performing the following

three-to-two carry-save addition:

(S S[i + 1], SC[i + 1]) = (S S[i] + SC[i] + x)/2

where the variable x may be 0, N , B, or D

depending on the values of Ai and qi. Accordingly,

the signal skipi+1 used in the i th iteration to indicate

whether the carry-save addition in the (i + 1) th

iteration will be skipped can be expressed as

skipi+1 = ∼ (Ai+1 ∨ qi+1 ∨ SS[i + 1]0)

where ∨ represents the OR operation. If skipi+1

generated in the i th iteration is 0, the carry-save

addition of the (i + 1)th iteration will not be

skipped. In this case, qi +1 and Ai+1 produced in the i

th iteration can be stored in FFs and then used to

fast select the value of x in the (i + 1)th iteration.

Otherwise (i.e., skipi+1 = 1), SS[i + 1] and SC[i + 1]

produced in the i th iteration must be right shifted

by two bit positions and the next clock cycle will go

to iteration i + 2 to skip the carry-save addition of

the (i + 1)th iteration. In this situation, not only

qi+1 and Ai+1 but also qi+2 and Ai+2 must be

produced and stored to FFs in the i th iteration to

immediately select the value of x in the (i + 2)th

iteration without lengthening the critical path.

Therefore, the selection signals (denoted as ˆ q and

ˆA) for choosing the proper value of x in the next

clock cycle must be picked from (qi+1, Ai+1) or

(qi+2, Ai+2) according to the skipi+1 signal

produced in the i th iteration. That is, (ˆ q, ˆA) =

(qi+2, Ai+2) if skipi+1 = 1. Otherwise, (ˆ q, ˆA) =

(qi+1, Ai+1).

3.4 Proposed Algorithm and Hardware

Architecture

On the bases of critical path delay reduction, a

new SCS-based Montgomery MM algorithm (i.e., SCS-

MM-New algorithm shown in Fig. 12) using one-level

CCSA architecture is proposed to significantly reduce

the required clock cycles for completing one MM. As

shown in SCS-MM-New algorithm, steps 1–5 for

producing ˆB and ˆD are first performed. Note that

because qi+1 and qi+2 must be generated in the i th

iteration, the iterative index i of Montgomery MM will

start from −1 instead of 0 and the corresponding initial

values of ˆ q and ˆA must be set to 0. Furthermore, the

original for loop is replaced with the while loop in SCS-

MM-New algorithm to skip some unnecessary iterations

when skipi+1 = 1. In addition, the ending number of

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 37

iterations in SCS-MM-New algorithm is changed to k +

4 instead of k + 1 in Fig. 11. This is because B is

replaced with ˆB and thus three extra iterations for

computing division by two are necessary to ensure the

correctness of Montgomery MM. In the while loop,

steps 8–12 will be performed in the proposed one-level

CCSA architecture with one 4-to-1 multiplexer. The

computations of qi+1, qi+2, and skipi+1 in step 13 and

the selections of ˆA , ˆ q, and i in steps 14–20 can be

carried out in parallel with steps 8–12. Note that the

right-shift operations of steps 12 and 15 will be delayed

to next clock cycle to reduce the critical path delay of

corresponding hardware architecture.

The hardware architecture of SCS-MM-New

algorithm, denoted as SCS-MM-New multiplier, are

shown in Fig. 12, which consists of one one-level CCSA

architecture, two 4-to-1 multiplexers (i.e., M1 and M2),

one simplified. multiplier SM3, one skip detector

Skip_D, one zero detector Zero_D, and six registers.

Fig. 11. SCS-MM-New algorithm.

Fig. 12. SCS-MM-New multiplier.

Skip_D is developed to generate skipi+1, ˆ q, and ˆA in

the i th iteration. Both M4 and M5 in Fig. 12 are 3-bit 2-

to-1 multiplexers and they are much smaller than k-bit

multiplexers M1, M2, and SM3. In addition, the area of

Skip_D is negligible when compared with that of the k-

bit one-level CCSA architecture.The select signals of

multiplexers M1 and M2 in Fig. 12 are generated by the

control part, which are not depicted for the sake of

simplicity.

Fig. 13. Skip detector Skip_D.

At the beginning of Montgomery multiplication,

the FFs stored skipi+1, ˆ q, ˆA are first reset to 0 as

shown in step 1 of SCS-MM-New algorithm so that ˆD =

ˆB + ˆN can be computed via the one-level CCSA

architecture. When performing the while loop, the skip

detector Skip_D shown in Fig. 12 is used to produce

skipi+1, ˆ q, and ˆA. The Skip_D is composed of four

XOR gates, three AND gates, one NOR gate, and two 2-

to-1 multiplexers. It first generates the qi+1, qi+2, and

skipi+1 signal in the i th iteration according to (5), (7),

and (8), respectively, and then selects the correct ˆ q and

ˆA according to skipi+1. At the end of the i th iteration, ˆ

q, ˆA, and skipi+1 must be stored to FFs. In the next

clock cycle of the i th iteration, SM3 outputs a proper x

according to ˆ q and ˆA generated in the i th iteration as

shown in steps 8–11, and M1 and M2 output the correct

SC and SS according to skipi+1 generated in the i th

iteration. If skipi+1 = 0, SC _ 1 and SS _ 1 are selected.

Otherwise, SC _ 2 and SS _ 2 are selected. That is, the

right-shift 1-bit operations in steps 12 and 15 of SCS-

MM-New algorithm are performed together in the next

clock cycle of iteration i . In addition, M4 and M5 also

select and output the correct SC[i]2:0 and SS[i]2:0

according to skipi+1 generated in the i th iteration. Note

that SC[i]2:0 and SS[i]2:0 can also be obtained from

M1 and M2 but a longer delay is required because they

are 4-to-1 multiplexers. After the while loop in steps 7–

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 38

21 is completed, ˆ q and ˆA stored in FFs are reset to 0.

Then, the format conversion in steps 23 and 24 can be

performed by the SCS-MM-New multiplier similar to

the computation of ˆD = ˆB + ˆN in steps 3 and 4.

Finally, SS[k +5] in binary format is outputted when

SC[k + 5] is equal to 0 .

4.EXTENSION METHOD

4.1 Parallel Prefix Adder

In proposed system, a parallel prefix

adder(PPA) is used to reduce carry propogation

delay.koggestone adder is one type of parallel prefix

adder. VLSI Integer adders find applications in

Arithmetic and Logic Units (ALUs), microprocessors

and memory addressing units. Speed of the adder often

decides the minimum clock cycle time in a

microprocessor. The need for a Parallel Prefix Adder

(PPA) is that it is primarily fast when compared with a

ripple carry adder. PPA is afamily of adders derived

from the commonly known carry look ahead adders.

These adders are suited for additions with wider word

lengths. PPA circuits use a tree network to reduce the

latency to 2(log) n,where ‘n’ represents the number of

bits..The Kogge–Stone adder is a parallel prefix form

carry look-ahead adder. Other parallel prefix adders

include the Brent-Kung adder, the Han Carlson adder,

and the fastest known variation, the Lynch-Swartzlander

Spanning Tree adder.PPA pre-computes and generates

the signals,it involves less delay .

4.2 Kogge – Stone Adder(KSA)

KSA is a parallel prefix form carry look ahead

adder, it is widely considered as the fastest adder and is

widely used in the industry for high performance

arithmetic circuits

Figure 14 .kogge stone adder example

The Kogge–Stone adder takes more area to

implement than the Brent–Kung adder, but has a

lower fan-out at each stage, which increases

performance for typical CMOS process nodes.

However, wiring congestion is often a problem for

Kogge–Stone adders. The Lynch-Swartzlander

design is smaller, has lower fan-out, and does not

suffer from wiring congestion; however to be used

the process node must support Manchester Carry

Chain implementations. The general problem of

optimizing parallel prefix adders is identical to the

variable block size, multi level, carry-skip adder

optimization problem, a solution of which is found

in an example of a 4-bit Kogge–Stone adder is

shown in the diagram. Each vertical stage produces

a "propagate" and a "generate" bit, as shown. The

culminating generate bits (the carries) are produced

in the last stage (vertically), and these bits are

XOR'd with the initial propagate after the input (the

red boxes) to produce the sum bits. E.g., the first

(least-significant) sum bit is calculated by

XORingthe propagate in the farthest-right red box

(a "1") with the carry-in (a "0"), producing a "1".

The second bit is calculated by XORingthe

propagate in second box from the right (a "0") with

C0 (a "0"), producing a "0".

5.Simulation And Synthesis Results:

5.1 Synthesis results:

http://www.jetir.org/
https://en.wikipedia.org/wiki/Carry_look-ahead_adder
https://en.wikipedia.org/w/index.php?title=Brent%E2%80%93Kung_adder&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fan-out
https://en.wikipedia.org/w/index.php?title=Lynch-Swartlzlander&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fan-out
https://en.wikipedia.org/w/index.php?title=Manchester_Carry_Chain&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Manchester_Carry_Chain&action=edit&redlink=1
https://en.wikipedia.org/wiki/Carry-skip_adder
https://en.wikipedia.org/wiki/Carry_%28arithmetic%29
https://en.wikipedia.org/wiki/XOR

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 39

Synthesis results of parallel prefix adder is

shown in figure 5.1.Here a, b are inputs ,sum is output

and i is 32 bit integer.

Figure 5.1 synthesis results of parallel prefix adder

5.2 simulation results

Simulation results describe the design summary.

It contains number of flip-flop, LUT’s, IOBs, timing

delays are used.

Figure 5.2 design summary of carry propagate adder

Figure 5.3 design summary of carry save adder

Figure5.4 design summary of kogg stone adder

Figure 5.5 design summary of Montgomery modular

multiplication

Figure 5.6 design summary of Montgomery modular

multiplication of semi carry save adder

6. CONCLUSION

In this we have analysed an efficient

Montgomery Modular multiplier using a parallel

prefix adder.A parallel prefix adder reduces the

delay of the system which further increases the

speed of the system. Here we have used a Kogge-

stone adder which is one type of parallel prefix

adder , in which carries are generated fast by

computing them in parallel at the cost of increased

area.

REFERENCES

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807256 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 40

[1]R. L. Rivest, A. Shamir, and L. Adleman, “A

method for obtaining digital signatures and
public-key cryptosystems,” Commun. ACM, vol.
21, no. 2, pp. 120–126, Feb. 1978.

[2] V. S. Miller, “Use of elliptic curves in
cryptography,” in Advances in Cryptology.
Berlin, Germany: Springer-Verlag, 1986, pp.
417–426.

[3] N. Koblitz, “Elliptic curve cryptosystems,”
Math. Comput., vol. 48, no. 177, pp. 203–209,
1987.

[4]P. L. Montgomery, “Modular multiplication
without trial division,” Math. Comput., vol. 44,
no. 170, pp. 519–521, Apr. 1985.

[5]Y. S. Kim, W. S. Kang, and J. R. Choi,
“Asynchronous implementation of 1024-bit
modular processor for RSA cryptosystem,” in
Proc. 2nd IEEE Asia-Pacific Conf. ASIC, Aug.
2000, pp. 187–190.

[6]V. Bunimov, M. Schimmler, and B. Tolg, “A
complexity-effective version of Montgomery’s
algorihm,” in Proc. Workshop Complex.
Effective Designs, May 2002.

[7]H. Zhengbing, R. M. Al Shboul, and V. P.

Shirochin, “An efficient architecture of 1024-

bits cryptoprocessor for RSA cryptosystem

based on modified Montgomery’s algorithm,” in

Proc. 4th IEEE Int. Workshop Intell. Data

Acquisition Adv. Comput. Syst., Sep. 2007, pp.

643–646.
[8]Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang,

“An efficient CSA architecture for Montgomery
modular multiplication,” Microprocessors
Microsyst., vol. 31, no. 7, pp. 456–459, Nov.
2007.

[9]C. McIvor, M. McLoone, and J. V. McCanny,
“Modified Montgomery modular multiplication
and RSA exponentiation techniques,” IEE
Proc.-Comput. Digit. Techn., vol. 151, no. 6,
pp. 402–408, Nov. 2004.

[10] S.-R. Kuang, J.-P. Wang, K.-C. Chang, and

H.-W. Hsu, “Energy-efficient high-throughput

Montgomery modular multipliers for RSA

cryptosys-tems,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 21, no. 11,

pp. 1999–2009, Nov. 2013.
[11] J. C. Neto, A. F. Tenca, and W. V.

Ruggiero, “A parallel k-partition method to
perform Montgomery multiplication,” in Proc.

IEEE Int. Conf. Appl.-Specific Syst., Archit.,
Processors, Sep. 2011, pp. 251–254.

[12] J. Han, S. Wang, W. Huang, Z. Yu, and X.
Zeng, “Parallelization of radix-2 Montgomery
multiplication on multicore platform,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 21, no. 12, pp. 2325–2330, Dec. 2013.

Author profile:

Sanduri Akshitha,she received

bachelors of degree in 2015 from Electronics and

Communication of engineering from Sudheer

Reddy college of engineerng andctechnoogy for

women.She is pursuing M.Tech in VLSI System

Design from CMR Institute of Technology.

Mrs.P.Navitha

She is working as Assistant professor in CMR

Institute of Technology and has 6 years experience

in teaching field.

Mrs.D.Mamatha

She is working as Assistantprofessor in CMR

institute of Technology nd has 4 years experience in

teaching field

http://www.jetir.org/

