On βg^* - closed sets in Topological Spaces

N. Bhuvaneswari¹, L. Vidyarani²

¹Research scholar, ²Assistant Professor, Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore-641 029. Email: bhuvanmaths5@gmail.com¹, E.mail: vidyarani16@gmail.com².

ABSTRACT

The aim of this paper is to define a new class of set namely βg^* - closed sets in topological spaces. Also we investigate about βg^* - continuous functions and βg^* - irresolute functions in topological spaces.

Mathematics subject clasification: 54A05, 54C05. Key word: βg^* - closed sets, βg^* - continuous functions, βg^* - irresolute functions.

1. Introduction

In 1970, Levine[3] introduced the concept of generalized closed sets in topological spaces. Many mathematicians started generalizing closed sets in recent years. M.K.R.S. Veerakumar[8] and S. P. Arya and T. Nour[2] introduced g^* - closed sets and gs-closed sets respectively in topological spaces. In this paper we introduce a new class of sets namely βg^* - closed sets in topological spaces and study some of its basic properties. This class was obtained by generalizing closed sets via g^* closed sets which was introduced by M.K.R.S. Veerakumar[8].

2. Preliminaries

Definition 2.1. A subset A of a topological space (X, τ) is called

- (1) a pre open set [5] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.
- (2) a semi open set [4] if $A \subseteq cl(int(A))$ and a semi closed set if $int(cl(A)) \subseteq A$.
- (3) an α open set [6] if $A \subseteq int(cl(int(A)))$ and an α closed set if $cl(int(cl(A))) \subseteq A$.
- (4) a semi pre open set(= β -open) [1] if $A \subseteq cl(int(cl(A)))$ and a semi-pre closed set(= β closed) if $int(cl(int(A))) \subseteq A$.
- (5) a regular open set [7] if A = int(cl(A)) and a regular closed set if A = cl(int(A)).
- (6) π open [9] if A is the union of regular open sets.

The intersection of all semi - closed (resp.pre-closed, semi-preclosed, regular-closed and α - closed) sets containing a subset A of (X,τ) is called the semi-closure (resp.pre-closure, semi-pre-closure, regular-closure and α -closure) of A and is denoted by scl(A) (resp. pcl(A), spcl(A), rcl(A) and α cl(A)). **Definition 2.2.** A subset A of a topological space (X,τ) is called

- (1) a generalized closed set(briefly g closed) [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- (2) a strongly generalized closed set(briefly g^* closed) [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ) .
- (3) a generalized semi closed set(briefly gs closed) [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .

Definition 2.3. A function $f: X \rightarrow Y$ from a topological spaces X into a topological space Y is called

- (1) continuous [3] if the inverse image of a closed set in Y is closed in X.
- (2) pre continuous [5] if the inverse image of a closed set in Y is pre closed set in X.
- (3) semi continuous [3] if the inverse image of a closed set in Y is semi closed set in X.
- (4) α continuous [6] if the inverse image of a closed set in Y is α closed set in X.
- (5) β continuous [1] if the inverse image of a closed set in Y is β closed set in X.
- (6) r continuous [7] if the inverse image of a closed set in Y is r closed set in X.
- (7) π continuous [9] if the inverse image of a closed set in Y is π closed set in X.
- (8) g continuous [3] if the inverse image of a closed set in Y is g closed set in X.
- (9) g* continuous [8] if the inverse image of a closed set in Y is g* closed set in X.
- (10) gs continuous [2] if the inverse image of a closed set in Y is gs closed set in X.

3. βg^* - closed sets

Definition 3.1. A subset A of (X,τ) is called βg^* - closed set if $\beta cl(A) \subseteq U$ whenever $A \subseteq U$, U is g^* -open in (X,τ) .

Theorem 3.2. Every closed set is βg^* - closed.

Proof: Let A be any closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is closed. We have $cl(A) = A \subseteq U$. But, $\beta cl(A) \subseteq cl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.3. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau^c = \{\phi, \{c\}, \{b, c\}, X\}$. $X\}$. βg^* - closed set = $\{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a, c\}$. Then the subset A is βg^* - closed but not a closed set. **Theorem 3.4.** Every pre - closed set is βg^* - closed.

Proof: Let A be any pre - closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is pre-closed. We have $pcl(A) = A \subseteq U$. But, $\beta cl(A) \subseteq pcl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\phi, \{b\}, \{b, c\}, X\}$ and pre - closed set = $\{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. βg^* - closed set = $\{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$. Let $A = \{a, b\}$. Then the subset A is βg^* - closed but not a pre - closed set.

Theorem 3.6. Every semi - closed set is βg^* - closed.

Proof: Let A be any semi - closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is semi - closed. We have $scl(A) = A \subseteq U$. But, $\beta cl(A) \subseteq scl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.7. Let $X = \{a, b, c\}, \tau = \{\phi, \{c\}, \{a, c\}, X\}$ and semi - closed set = $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. βg^* - closed set= $\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Let $A = \{b, c\}$. Then the subset A is βg^* - closed but not a semi - closed set.

Theorem 3.8. Every α - closed set is βg^* - closed.

Proof: Let A be any α - closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is α - closed. We have $\alpha cl(A) = A \subseteq U$. But, $\beta cl(A) \subseteq \alpha cl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.9. Let $X = \{a, b, c\}, \tau = \{\phi, \{b\}, \{a, c\}, X\}$ and α - closed set = $\{\phi, \{b\}, \{a, c\}, X\}$. βg^* - closed set = $\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a, b\}$. Then the subset A is βg^* - closed but not an α - closed set.

Theorem 3.10. Every β - closed set is a βg^* - closed.

Proof: Let A be any β - closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is β -closed. We have $\beta cl(A) = A \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.11. Let $X = \{a, b, c\}, \tau = \{\phi, \{c\}, \{a, b\}, X\}$ and β - closed set = $\{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. βg^* - closed set = $\{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Let $A = \{a, c\}$. Then the subset A is βg^* - closed but not a β -closed set.

Theorem 3.12. Every r - closed set is βg^* - closed.

Proof: Let A be r - closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is r-closed. We have $rcl(A) = A \subseteq U$. But, $\beta cl(A) \subseteq rcl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.13. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and r - closed set $= \{\phi, \{b, c\}, \{a, b\}, X\}$. βg^* - closed set $= \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$. Let $A = \{b\}$. Then the subset A is βg^* - closed but not a r - closed set.

Theorem 3.14. Every π - closed set is βg^* - closed.

Proof: Let A be π - closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is π - closed. We have $\pi cl(A) = A \subseteq U$. But, $\beta cl(A) \subseteq \pi cl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.15. Let $X = \{a, b, c\}, \tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and π - closed set $= \{\phi, X\}$. βg^* - closed set $= \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Let $A = \{a\}$. Then the subset A is βg^* -closed but not a π - closed set.

Theorem 3.16. Every g - closed set is βg^* - closed.

Proof: Let A be g - closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is g-closed. We have $cl(A) \subseteq U$. But, $\beta cl(A) \subseteq cl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.17. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and g - closed set = $\{\phi, \{c\}, \{b, c\}, \{a, c\}, X\}$. βg^* -closed set = $\{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{b\}$. Then the subset A is βg^* -closed but not a g-closed set.

Theorem 3.18. Every g^* - closed set is βg^* - closed.

Proof: Let A be g^* -closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is g^* - closed. We have $cl(A) \subseteq U$. But, $\beta cl(A) \subseteq cl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.19. Let $X = \{a, b, c\}, \tau = \{\phi, \{b\}, \{a, b\}, X\}$ and g^* - closed set = $\{\phi, \{c\}, \{b, c\}, \{a, c\}, X\}$. βg^* -closed set = $\{\phi, \{a\}, \{c\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a\}$. Then the subset A is βg^* -closed but not a g^* - closed set.

Theorem 3.20. Every gs - closed set is βg^* - closed.

Proof: Let A be gs-closed set in X. Let U be a g^* - open set such that $A \subseteq U$. Since A is gs - closed. We have $scl(A) \subseteq U$. But, $\beta cl(A) \subseteq scl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a βg^* - closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.21. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and gs - closed set= $\{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. βg^* - closed set = $\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X\}$. Let $A = \{b\}$. Then the subset A is βg^* -closed but not a gs - closed set.

Remark 3.22. The following diagram shows that the relations ship between βg^* - closed sets and known existing sets. None of the implication is reversible.

Theorem 3.23. If A is an βg^* - closed subset of X such that $A \subset B \subset \beta cl(A)$, then B is also βg^* - closed set in X.

Proof: Let A be an βg^* -closed set of X such that $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* - open in X. To prove : B is βg^* - closed. Let $B \subseteq U$. now $\beta cl(B) \subseteq \beta cl(A) \subseteq U$ implies $\beta cl(B) \subseteq U$ whenever $B \subseteq U$ and U is g^* - open implies B is βg^* - closed

Definition 3.24. A subset A of a topological space (X,τ) is called βg^* - open set if and only if A^c is βg^* - closed in (X,τ) .

Theorem 3.25. For a topological space (X,τ) , the following hold.

- (1) Every open set is βg^* -open.
- (2) Every pre open set is βg^* open.
- (3) Every semi open set is βg^* open.
- (4) Every g open set is βg^* open.
- (5) Every g^* open set is βg^* open.
- (6) Every gs open set is βg^* open.

Proof: Obvious.

Theorem 3.26. If $\beta int(A) \subseteq B \subseteq A$ and if A is βg^* - open in X, then B is βg^* - open in X.

Proof: $B \subseteq A$ implies $X - A \subseteq X - B$, $\beta int(A) \subseteq B$ implies $X - B \subseteq X - \beta int(A)$. That is $X - A \subseteq X - B \subseteq X - \beta int(A) = \beta cl(X - A)$. Since X-A is βg^* - closed, by Theorem(3.23) X-B is βg^* - closed which implies B is βg^* - open.

4. βg^* - continuous functions

Definition 4.1. : A function $f:(X,\tau) \to (Y,\sigma)$ is said to be βg^* -continuous, if every $f^{-1}(V)$ is βg^* - closed in (X,τ) for every V in (Y,σ) .

Theorem 4.2. A function $f:(X,\tau) \rightarrow (Y,\sigma)$, the following hold

- (1) Every continuous function is βg^* continuous.
- (2) Every pre continuous function is βg^* continuous.
- (3) Every semi continuous function is βg^* continuous.
- (4) Every α continuous function is βg^* continuous.
- (5) Every β continuous function βg^* continuous.
- (6) Every r continuous function is βg^* continuous.
- (7) Every π continuous function is βg^* continuous.
- (8) Every g continuous function is βg^* continuous.
- (9) Every g^* continuous function is βg^* continuous.
- (10) Every gs continuous function is βg^* continuous.

Proof: Let V be a closed set in Y. Since f is continuous, then $f^{-1}(V)$ is closed in X. Since every closed set is βg^* - closed, then $f^{-1}(V)$ is βg^* - closed in X. Hence f is βg^* - continuous.

Proof of (2) to (10) is obvious.

Example 4.3. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{c\}, \{a, c\}, X\}. \sigma = \{\phi, \{a\}, \{b, c\}, Y\}.$ $\sigma^c = \{\phi, \{b, c\}, \{a\}, Y\}$ and closed set $= \{\phi, \{b\}, \{a, b\}, X\}.$ Then βg^* - closed set $= \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}.$ Let $f:(X, \tau) \to (Y, \sigma)$ define a map $f(a) = a, f(b) = b, f(c) = c, then f^{-1}(b, c) = \{b, c\}, f^{-1}(a) = \{a\}, which is in \beta g^*$ - closed set in X. Therefore f is βg^* - continuous function.

Example 4.4. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}. \sigma = \{\phi, \{b\}, \{b, c\}, Y\}. \sigma^c = \{\phi, \{a, c\}, \{a\}, Y\} and pre-closed set = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}. Then <math>\beta g^* - closed set = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X\}. Let f:(X, \tau) \rightarrow (Y, \sigma) define a map <math>f(a) = c, f(b) = b, f(c) = a, then f^{-1}(a, c) = \{b, c\}, f^{-1}(a) = \{c\}, which is in \beta g^* - closed set in X. Therefore f is <math>\beta g^*$ - continuous function.

Example 4.5. Let $X=Y=\{a,b,c\}, \tau = \{\phi, \{c\}, \{a,c\}, X\}. \sigma = \{\phi, \{b\}, Y\}. \sigma^c = \{\phi, \{a,c\}, Y\}$ and semi - closed and β - closed set = $\{\phi, \{a\}, \{b\}, \{a,b\}, X\}.$ Then βg^* - closed set = $\{\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, X\}.$ Let $f:(X,\tau) \to (Y,\sigma)$ define a map $f(a)=b, f(b)=a, f(c)=c, then f^{-1}(a,c)=\{b,c\}, which is in \beta g^*$ - closed set in X. Therefore f is βg^* - continuous function.

Example 4.6. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{b\}, \{a, c\}, X\}.$ $\sigma = \{\phi, \{a\}, \{a, c\}, Y\}.$ $\sigma^c = \{\phi, \{b, c\}, \{b\}, Y\}$ and α - closed set $= \{\phi, \{b\}, \{a, c\}, X\}.$ Then βg^* - closed set $= \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}.$ Let $f:(X, \tau) \rightarrow (Y, \sigma)$ define a map $f(a) = a, f(b) = c, f(c) = b, then f^{-1}(b, c) = \{b, c\}, f^{-1}(b) = \{c\}, which is in \beta g^*$ - closed set in X. Therefore f is βg^* - continuous function.

Example 4.7. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{b\}, \{a, c\}, X\}.$ $\sigma = \{\phi, \{a\}, \{a, c\}, Y\}.$ $\sigma^c = \{\phi, \{b, c\}, \{b\}, Y\}$ and π - closed and r - closed set $= \{\phi, X\}.$ Then βg^* - closed set $= \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}.$ Let $f:(X, \tau) \to (Y, \sigma)$ define a map f(a)=a, f(b)=c, f(c)=b, then $f^{-1}(b,c)=\{b,c\}$, $f^{-1}(b)=\{c\}$, which is in βg^* - closed set in X. Therefore f is βg^* - continuous function.

Example 4.8. Let $X=Y=\{a,b,c\}, \tau = \{\phi, \{b\}, \{b,c\}, X\}. \sigma = \{\phi, \{a,c\}, Y\}.$ $\sigma^c = \{\phi, \{b\}, Y\}$ and g - closed and g* - closed set $= \{\phi, \{a\}, \{a,c\}, X\}.$ Then βg^* - closed set $= \{\phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, X\}.$ Let $f:(X,\tau) \to (Y,\sigma)$ define $a \text{ map } f(a)=a, f(b)=c, f(c)=b, \text{ then } f^{-1}(b)=\{c\}, \text{ which is in } \beta g^*$ - closed set in X. Therefore f is βg^* - continuous function.

5. βg^* - irresolute functions

Definition 5.1. : A function $f:(X, \tau) \to (Y, \sigma)$ is said to be βg^* -irresolute, if every $f^{-1}(V)$ is βg^* - closed in (X, τ) for every V in βg^* - closed (Y, σ) .

Theorem 5.2. Every βg^* - irresolute function is βg^* - continuous. **proof**: Let v be a βg^* - closed set in Y. Since every closed set is βg^* - closed, then

 $f^{-1}(v)$ is βg^* - closed in X. Hence f is βg^* -irresolute.

Example 5.3. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{b\}, \{b, c\}, X\}, \beta g^* - closed set = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}. \sigma = \{\phi, \{a, c\}, Y\}, \beta g^* - closed set = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, Y\}.$ Let $f:(X, \tau) \rightarrow (Y, \sigma)$ define a function $f(a) = a, f(b) = c, f(c) = b, then f^{-1}(b, c) = \{b, c\}, which is in \beta g^* - closed set in X.$ Therefore f is $\beta g^* - irresolute function.$

Remark 5.4. The composition of two βg^* - continuous function need not be a βg^* - continuous function. It can be seen from the following example.

Example 5.5. Let $X = Y = Z = \{a, b, c\}$ with $\tau = \{\phi, \{c\}, \{a, c\}, X\}, \beta g^* - closed set = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}.$ $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}, \beta g^* - closed set = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X\}.$ $\eta = \{\phi, \{b\}, \{a, c\}, X\}, \beta g^* - closed set = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}.$ $Define f:(X, \tau) \to (Y, \sigma) \ by \ f(a) = a, \ f(b) = c, \ f(c) = b.$ $Define g:(Y, \sigma) \to (Z, \eta) \ by \ g(a) = a, \ g(b) = c, \ g(c) = b.$ $Here \ \{a, c\} \ is \ a \ closed \ set \ in \ (Z, \eta). \ But \ (g \circ f)^{-1} \{a, c\} = \{a, c\} \ is \ not \ \beta g^* \ - closed \ set \ in \ (X, \tau).$ Therefore $g \circ f \ is \ not \ \beta g^* \ - continuous \ function.$

Theorem 5.6. If $f:(X,\tau) \to (Y,\sigma)$ is βg^* - irresolute and $g:(Y,\sigma) \to (Z,\eta)$ is βg^* - continuous then $g \circ f$ is βg^* - continuous.

proof: Let V be closed set in Z. since g is βg^* - continuous then $g^{-1}(V)$ is βg^* - closed in Y. Since f is βg^* - irresolute then $f^{-1}(g^{-1}(V)) \beta g^*$ - closed in X. Hence $g \circ f$ is βg^* - continuous.

Theorem 5.7. If $f:(X,\tau) \to (Y,\sigma)$ is βg^* - irresolute and $g:(Y,\sigma) \to (Z,\eta)$ is βg^* - irresolute then $g \circ f$ is βg^* - irresolute.

proof: Let V be βg^* - closed set in Z. since g is βg^* - irresolute then $g^{-1}(V)$ is βg^* - closed in Y. Since f is βg^* - irresolute then $f^{-1}(g^{-1}(V))\beta g^*$ - closed in X. Hence $g \circ f$ is βg^* - irresolute.

6. CONCLUSION

In this paper we have defined βg^* - closed sets in topological spaces and studied its properties by comparing it with some of the existing closed sets and also we investigated βg^* - continuous functions and βg^* - irresolute functions. From the comparision we see that βg^* - closed sets is weaker than the other existing sets.

References

- [1] Andrijevi'c. D., semi pre-open sets, Mat. Vesnik, 38(1)(1986), 24-32.
- [2] Arya S. P. and Nour T., characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990),717-719.
- [3] Levine. N, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2), 89-96, (1970).
- [4] Levine. N, semi- open and semi- continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [5] Mashhour. A. S, ABD EI-MONSEF.M. E AND EI-DEEB, On pre continuous and weak pre continuous functionpings, Proc. math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [6] Nja°stad. o, some classes of nearly open-sets, Pacific J. Math., 15(1965), 961-970.
- [7] Stone.M, Application of the theory of Boolean rings to general topology, Trans.Amer.Math.Soc. 41,(1937),374-481.
- [8] Veerakumar. M.K.R.S, Between Closed sets and g- closed sets, Mem. Fac.Sci. Kochi Univ. (Math.) 21(2000), 1-19.
- [9] Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad-Nauk. SSSR., 178,(1968),778-779.