
© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 691

Enhanced Cohesion Of A Software By Performing

Usage Pattern Of Inter Module Based Clustering

Er. Pawal Kaur Er.chamkaur Singh

M.Tech Scholar Assistant Professor

Guru Kashi University TalwandiSabo, Bathinda Guru Kashi University TalwandiSabo, Bathinda

Abstract: with the advancement in the computer

technology new and advanced tools are coming into picture.

Because the new software with advanced development tool

perform various complex tasks efficiently. Software

development is human centric task. It involves large number

of people who contribute to the development. Because it

involves multiple persons can be prone to various types of

discrepancies into the system. These inefficiencies are

various design defects. Cohesion and Coupling being the

two important metrics that denotes the quality at structural

design level of a software system. The term cohesion is

originated from structural design and it refers to how much

the various elements of a given modules are related to each

other. These metrics do not consider member variable

references to outside modules and member variable

references made due to nested member function calls, in

proposed system various types of inter module dependencies

can be checked. So that one module can be shifted from

one class to other class. Will reduces the overall module

execution time and also reduces the memory space

requirement. So in proposed system the inter module and

Inter package frequent usage pattern can be identified.

Keywords: FUP, Inter, Intra, Time, Space.

I. INTRODUCTION

With increasing growth of software product use in industry

and our day to day life, the software development process

has gained popularity among researchers and other

practitioners. Since software development is a human-

centric activity, so, it is prone to undesirable performance

and design defects [10]. So, software development process

needs to be continuously assessed and evolved over time in

order to fulfill customer’s requirements and remove other

identified defects .This helps in improving the software

design and hence the quality of a software system. Cohesion

and Coupling being the two important metrics that denotes

the quality at structural design level of a software system.

The term cohesion is originated from structural design and it

refers to how much the various elements of a given modules

are related to each other. It is an important indicator of

software design quality and the modularity. A higher

cohesion value of a module indicates that the given module

is providing near single functionality, whereas, a lower

value hinders the reuse of a software module. So, a module

with higher cohesion is always desirable. Numerous

cohesion metrics have been proposed already. These

proposed metrics are based on measuring the method to

method interaction and member variable references made by

them. These metrics do not consider member variable

references to outside modules and member variable

references made due to nested member function calls, which

in our idea is a research gap in accurately measuring

cohesion of a module.

An approach to measure cohesion at module level is

proposed. The proposed metric, Usage Pattern Based

Cohesion (UPBC), measures the usage pattern of member

variables among different member functions of a module.

Later, based on the measured cohesion metric value,

different modules are clustered by using the proposed

clustering algorithm called FUP based Clustering

(FUPClust).

The approach makes use of usage patterns present among

different software elements. The usage patterns considered

are extracted from the member function’s usage pattern

adopted for accessing different member variables present in

the software system. The usage patterns extracted also

considers the nested function calls statements present in any

of the member function definition. The depth of the nested

function calls is considered as the threshold parameter in the

proposed methodology and it is user defined. The specified

threshold value is used to extract the frequent usage (FUP’s)

patterns for different software elements. Based on the

extracted FUP’s, the cohesion among different software

elements (class/package) is calculated based on the

proposed cohesion metric. The calculated cohesion value

among software elements is further used to perform

clustering. It mainly consists of three steps and their

structure is depicted in the figure-1. The first step in

proposed methodology is to extract the FUP for each of the

software element. The second step calculates cohesion of

each software element using proposed cohesion

measurement metric. The third step uses the calculated

cohesion value to cluster elements into more cohesive

elements using the proposed algorithm.

1.1 Frequent Usage Pattern Extraction

This step of the proposed methodology aims at identifying

usage patterns present among software elements. The idea

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 692

behind usage pattern identification is that in a more cohesive

software element, the usage of member variables among the

different member functions of the same software element is

more as compared to outside elements. The

Fig. 1 Proposed Methodology for Cohesion[1]

identification of the usage patterns is done by statically

analyzing the source code of each of the software element.

The usage patterns of a member function consist of a set of

member variables directly or indirectly (through a call to

other member functions of same of different software

element) accessed and modified by it. During the process of

extraction of usage pattern, a threshold limit is imposed on

the depth of the indirect usage due to function calls. The

usage pattern of a software element called FUP is obtained

by grouping usage patterns of each of its member functions.

Consider a software element Ei that consists of m member

variables M1, M2… Mm and n member functions F1, F2…

Fn. Suppose the usage pattern of F1 = {Mi, Mj … Mk}; F2

= Φ; -----; Fn = {Mp, Mq … Mt}, then, the frequent usage

pattern of Ei is obtained as a set of distinct member

variables, FUP = {F1 U F2 U …. U Fn}. It is illustrated by

taking the following suitable hypothetical software system

example as shown in figure-2. In this example, the usage

pattern for member function F1 = {M1}, F2 = {M1, M2},

F3 = {M3}, F4 = {M4, M5, M7}, F5 = F6 = {M5, M7}.

Here, the usage pattern for F4 consist of direct usage as M4

and indirect usage consisting of M5 & M7 due to nested

functions call to F5 & F6. Similarly, the usage patterns for

rest of the member functions can be defined based on same

pattern, e.g. the usage pattern for F7 = Φ. Finally FUP of

every software element are represented in the form of a

vector Vi that denotes the usage pattern of a given software

element inside the whole software system. The size of

vector Vi is equal to the total number of member variables

defined and used inside the considered system and is

defined as follows

…….1

Here, Mj is the member variable defined inside the software

system.

II. LITERATURE SURVEY

As the popularity of object-oriented software development

is increasing, there is a greater need for software design

metrics which are capable of measuring the software design

quality. Cohesion is one such key design principle in

software engineering and in this direction, numerous

cohesion metrics have been already proposed.

[1] Yourdon et al.(2015) define the coupling for an object-

oriented software as the degree to which different modules

are interdependent on each other.

[2] Briand et al.(2014) propose a structural based unified

framework to measure cohesion in an object-oriented

software system and proposed a cohesion metric Coh that

counts attribute references and sharing among the methods

of a class.

[3] Bansiya (2014) defines cohesion in terms of coupling

by proposing a coupling metric Direct Class Coupling

(DCC) which counts the total number of classes that are

directly related to a given class.

[4] Chidamber et al.(2015) propose a metric suite that also

measures cohesion as LCOM (Lack of Cohesion among

Methods) metric which measures the sharing of member

variables among different pairs of methods of a class.

[5] Li and Henry(2016) proposes a cohesion metric

LCOM3 by extending the work and representing the system

as an undirected graph. They represented each class method

as a node in the graph and member variables sharing as an

edge in the graph. They measured class cohesion as the total

number of strongly connected components in MDG

(Module Dependency Graph).

[6] Hitz and Montazeri(2017) proposes another cohesion

metric LCOM4 by representing the system as a graph in

which the nodes represents the methods and edge between

any vertices denote that they are accessing the same

attribute.

[7] Henderson et al.(2016) give the latest proposed metric

LCOM5 in LCOM metric series. This metric gives cohesion

value of zero (0) if methods use only member variables of

the class and it gives a value of one (1) if every method uses

only one member variable of the class.

[8] Bieman and Kang’s(2015) also proposes two sets of

cohesion metrics known as tight class cohesion (TCC) and

loose class cohesion (LCC). They calculated TCC as the

ratio of a total number of pairs of member functions with no

sharing of member variables to a total number of pair of

direct member functions which share at least one member

variable among

III. PSEUDO CODE

INPUT

1. Total number of software elements in Original system is

N.

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 693

2. Vector representation of FUP of different Modules

3. Compute the Cohesion Values of different modules.

STEPS:

1. Iterate=true

2. Cohesion= Cohesion(Ei)/|E|

3. Total_Package = Total_Package – 1

4. Compute new overall cohesion value of a software

system i.e. cohesion’

5. If (Previous_Cohesion == COHESION’)

6. ITERATE = FALSE

7. Else

8. Previous_Cohesion = COHESION’ }

IV. ALGORITHM

Step1 Input the large program taken from the Github library.

These software are JUnit and Hospital Automation.

Step2 Break the whole large program into various packages.

Later on each package will be sub divided into various

modules and classes.

Step3 Identify the Inter and Intra module dependency

Frequent usage pattern.

Step4 Shift the module from one class to other class or from

one package to other package to reduces the execution time

and memory space requirement.

Step5 Measure the FUP for improved system.

Step6 Evaluate the time and space parameters.

V. FLOWCHART

Fig. 2 Flowchart

VI. RESULTS AND DISCUSSIONS

6.1 Intra Module complexity of different parameter

Table 1 Intra Module Complexity

Intra module Complexity

used

variables

Unused

Variables

Loops Tokens Lines Packages Total

2.7 0 4.5 30.6 23.4 1.8 63

3.6 0 0.9 20.7 16.2 1.8 43.2

1.8 0 0.9 15.3 12.6 0.9 31.5

3.6 0 1.8 22.5 17.1 1.8 46.8

2.7 0 4.5 26.1 18.9 1.8 54

2.7 0 2.7 22.5 17.1 0.9 45.9

9.9 0 0 26.1 16.2 1.8 54

8.1 0 0 26.1 18 1.8 54

0.9 0 1.8 21.6 18.9 0.9 44.1

 Average 48.5

Table shows the Intra module complexity based on different

parameters. These parameters are like for used variables,

Unused variables, Loops, Tokens, Lines, Packages etc.

These intra module dependency will be measuring the

discrepancies into the designing the modules of the same

software.

6.2 Inter Module complexity of different parameter

Table 2 Inter module Complexity

Inter Module Complexity

used

variables

Unused

Variables

Loops Tokens Lines Packages Total

3 0 5 34 26 2 70

4 0 1 23 18 2 48

2 0 1 17 14 1 35

4 0 2 25 19 2 52

3 0 5 29 21 2 60

3 0 3 25 19 1 51

11 0 0 29 18 2 60

9 0 0 29 20 2 60

1 0 2 24 21 1 49

 Average 53.88889

Table shows the Inter module complexity based on different

parameters. These parameters are like for used variables,

Unused variables, Loops, Tokens, Lines, Packages etc.

These intera module dependency will be measuring the

discrepancies into the designing of the the modules of the

same software.

6.3 Complexity comparison

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 694

Fig. 3 Complexity Comparison

This graph shows the complexity comparison for the inter

and Intra modules dependency. Using Inter modules

dependency FUP the complexity of the software can be

reduced substantially. That means the software

discrepancies is more dependent on the inter module

integrity compared to the intra module. This graph shows

the average complexity of the inter module and intra module

complexity of different types of c, c++ and java programs.

Inter module dependency check has less complexity than the

inter module.

VI. CONCLUSION

Software designing is the primary issue for the system

designing. The correct system design with less inter and

intra module cohesion and coupling will reduces the

complexity of the algorithm. Also it will reduces the design

time complexities of the software cohesion and coupling.

These complexities are main reason for the deteriorated

performance of the software. Various modules lies into the

same class or different class are having higher FUP. Means

for there collective execution they are dependent on each

other. This type of cohesion is called as intra cohesion. In

some cases the module cohesion also stands for two

different packages. That can be called as inter module. This

type of relative cohesion entity leads to more time and

storage wastage. In current research inter module

complexity and FUP has to be evaluated. once the relative

strength will be improving the system performance will also

be improving. So the time and space complexity reduction

by considering inter module FUP has been more success full

compared to intra module dependency.

VII. FUTURE WORK

In current research software complexity will directly be

dependent on the system integration. How there FUP for

inter and intra module cohesion will increases the

complexities. In future a integrated approach can be

considered. Which can collectively increases the

performance of the software.

VIII. REFERENCES

[1] L. Yourdon and M. Badri. (2015) “A Proposal of a new

class cohesion criterion: an empirical study.”Journal of

Object Technology, 3 (4).

[2] J. Bansiya. (2014) “A Hierarchical Model for object-

oriented Design Quality Assessment.” IEEE Transaction on

software engineering, 28(1). [3] J. M. Bieman and L.

M.(1994) “Ott. Measuring functional cohesion.” IEEE

Transactions on Software Engineering, 20(8):644–657.

[4] J. Briand and B. Kang.(2014) “Cohesion and reuse in an

object-oriented system.” Proceedings of the 1995

Symposium on Software Reusability, Seattle, Washington,

United States,259–262.

[5] C. Chidamber and E. Kidanmariam.(2015) “Metrics for

class cohesion and similarity between methods.” In

Proceedings of the 44th annual Southeast regional

conference, Florida, ACM, 91–95.

[6] Li. Briand, K. E. Henry, and S. Morasca.(2016) “On the

application of measurement theory in software engineering.”

Empirical Software Engineering, 1:61–88.

[7] Hitz and Montazeri(2017) “A Unified Framework for

Cohesion Measurement in Object-Oriented Systems.”

Software Metrics Symposium, Proceedings, Fourth

International, 43-53.

[8] Henderson and C.F. Kemerer, C.F.(2016) “A metrics

suite for object oriented design.” IEEE Transactions on

Software Engineering, 20, 476–493.

[9] Bieman and Kang’s and S. L. Pfleeger.(2015) “Software

metrics - a practical and rigorous approach.” (2. ed.).

International Thomson.

[10] A. Fuggetta.(2000) “Software process: a roadmap,” in

Proc. Conf. on The Future of Software Engineering,

Limerick, Ireland, 25–34.

[11] M. Harman, S. Danicic, B. Sivagurunathan, B. Jones,

and Y. Sivagurunathan.(1995) “Cohesion metrics.” In 8th

International Quality Week, San Francisco pages, 3(2), 1–

14.

[12] B. Henderson-Sellers.(1996) “Object-Oriented Metrics

Measures of Complexity.” Prentice-Hall, Inc., Upper Saddle

River, NJ.

[13] M. Hitz and B. Montazeri.(1995) “Measuring coupling

and cohesion in object-oriented systems.” Proceedings of

the International Symposium on Applied Corporate

Computing, 25–27.

[14] B. Kitchenham and S. Pfleeger.(1996) “Software

quality: the elusive target,” IEEE Softw., 13(1), 12–21.

[15] Kalantari, S., Alizadeh, M. and Motameni, H..(2015)

“Evaluation of the reliability of object-oriented systems

based on Cohesion and Coupling Fuzzy Computing”.

Journal of Advances in Computer Research, 6(1), 85-99.

[16] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen.(2007)

“The future of empirical methods in software engineering

research.” in Future of Software Engineering (FOSE),

Minneapolis, 358–378.

0

10

20

30

40

50

60
C

o

m

p

e

x

i

t

y

Inter Module

Intra Module

http://www.jetir.org/

