INTUITIONISTIC FUZZY γ SUPRA OPEN SETS

¹ R.Syed Ibrahim, ²S.Chandrasekar

¹Assistant Professor, Department of Mathematics, Sethu Institute of Technology, Kariapatti, Virudhunagar(DT), Tamilnadu, India 2Assistant Professor, PG & Research Department of Mathematics, Arignar Anna Govt. Arts College, Namakkal(DT), Tamil Nadu

Abstract: Necla Turanl introduced the concept of Intuitionistic fuzzy supra topological space which is a special case of Intuitionistic fuzzy topological space. Aim of this paper is we introduced in Intuitionistic fuzzy γ supra open sets in Intuitionistic fuzzy supra topological space and also discussed about IF γ supra open sets, IF γ supra closed sets, and Intuitionistic fuzzy γ supra Continuity in Intuitionistic fuzzy supra topological spaces

Key Words: IF supra open sets, IF supra closed sets, IF y supra open sets, IF y supra closed sets, Intuitionistic fuzzy y supra Continuity

1.INTRODUCTION

Topology is a classical subjects, as a generalization topological spaces many type of topological spaces introduced over the year. C.L. Chang [4] was introduced and developed fuzzy topological space by using L.A. Zadeh's[23] fuzzy sets. Coker[5] introduced the notion of Intuitionistic fuzzy topological spaces by using Atanassov's[2] Intuitionistic fuzzy set

A.S. Mashhour et al.[13] Introduced the supra topological spaces and studied in the year 1983. M. E. AbdEl-Monsef et al. [1] introduced the fuzzy supra topological spaces and studied fuzzy supra-continuous functions and obtained some properties and characterizations. In 2003 Necla Turanl [21] introduced the concept of Intuitionistic fuzzy supra topological space.

In 1996 D. Andrijevic [2] introduced b open sets in topological space, Aim of this paper is we introduced in Intuitionistic fuzzy γ supra open sets in Intuitionistic fuzzy supra topological space and also discussed about IF γ supra open sets, IF γ supra closed sets, and Intuitionistic fuzzy γ supra Continuity in Intuitionistic fuzzy supra topological space

2.PRELIMINARIES

DEFINITION 2.1: [3]

An Intuitionistic fuzzy set (IF for short) A is an object having the form

 $A = \{ \langle \mathbf{x}, \boldsymbol{\mu}_{A}(\mathbf{x}), \boldsymbol{\nu}_{A}(\mathbf{x}) \rangle : \mathbf{x} \in \mathbf{X} \}$

where the functions $\mu_A: X \to [0,1]$ and $\nu_A: X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Obviously, every fuzzy set A on a nonempty set X is an IFS of the following form

A = { $\langle x, \mu_A(x), 1 - \mu_A(x) \rangle$: $x \in X$ }.

Definition 2.2: [3]

(x) $\mathbf{\bar{0}} \sim = 1 \sim$.

Let A and B be two IFSs of the form A = { $\langle x, \mu_A(x), \nu_A(x) \rangle$: $x \in X$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle$: $x \in X$ }. Then, (i) A \subseteq B if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$, (ii) A = B if and only if $A \subseteq B$ and $A \supseteq B$, (iii) $A^{C} = \{ \langle \mathbf{x}, \nu_{A}(\mathbf{x}), \mu_{A}(\mathbf{x}) \rangle : \mathbf{x} \in \mathbf{X} \},\$ (iv) AUB = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle$: $x \in X$ }, (v) A \cap B = {(x, $\mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x)$): $x \in X$ }. (vi) []A = { $\langle x, \mu_A(x), 1 - \mu_A(x) \rangle, x \in X$ }; (vii) $\langle \rangle A = \{ \langle x, 1 - \nu_A(x), \nu_A(x) \rangle, x \in X \};$ The Intuitionistic fuzzy sets $0 \sim = \langle x, 0, 1 \rangle$ and $1 \sim = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X Definition 2.3. [3] Let $\{Ai : i \in J\}$ be an arbitrary family of Intuitionistic fuzzy sets in X. Then (a) $\cap A_i = \{ \langle x, \land \mu_{Ai}(x), \lor \nu_{Ai}(x) \rangle : x \in X \};$ (b) $\cup A_i = \{ \langle x, \vee \mu_{Ai}(x), \wedge \nu_{Ai}(x) \rangle : x \in X \}.$ Definition 2.4. [3] Since our main purpose is to construct the tools for developing Intuitionistic fuzzy topological spaces, we must introduce the Intuitionistic fuzzy sets 0~ and 1~ in X as follows: $0 \sim = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1 \sim = \{ \langle x, 1, 0 \rangle : x \in X \}.$ Definition 2.5:[3] Let A,B,C be Intuitionistic fuzzy sets in X. Then (i) $A \subseteq B$ and $C \subseteq D \Longrightarrow A \cup C \subseteq B \cup D$ and $A \cap C \subseteq B \cap D$, (ii) $A \subseteq B$ and $A \subseteq C \Longrightarrow A \subseteq B \cap C$, (iii) $A \subseteq C$ and $B \subseteq C \Longrightarrow A \cup B \subseteq C$, (iv) $A \subseteq B$ and $B \subseteq C \Longrightarrow A \subseteq C$, $(v)\overline{A \cup B} = \overline{A} \cap \overline{B}$ (vi) $\overline{A \cap B} = \overline{A} \cup \overline{B}$, (vii) $A \subseteq B \Longrightarrow \overline{B} \subseteq \overline{A}$, (viii) $(\overline{A}) = A$, (ix) $1 \sim = 0 \sim$,

Definition 2.6.[4]

Let f be a mapping from an ordinary set X into an ordinary set Y, If B = { $\langle y, \mu_B(y), \nu_B(y) \rangle$: $y \in Y$ } is an Intuitionistic fuzzy set in Y, then the inverse image of B under f is an Intuitionistic fuzzy set defined by $f^{-1}(B) = \{(x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x)) : x \in X\}$

The image of Intuitionistic fuzzy set $A = \{ \langle y, \mu_A(y), \nu_A(y) \rangle : y \in Y \}$ under f is an Intuitionistic fuzzy set defined by

 $f(A) = \{ \langle y, f(\mu_A)(y), f(\nu_A)(y) \rangle : y \in Y \}.$

Definition 2.7[4]

Let A, Ai (i \in J) be Intuitionistic fuzzy sets in X, B, Bi (i \in K) be Intuitionistic fuzzy sets in Y and f : X \rightarrow Y is a function. Then (i) $A_1 \subseteq A_2 \Longrightarrow f(A_1) \subseteq f(A_2)$,

(ii) $B_1 \subseteq B_2 \Longrightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$, (iii) $A \subseteq f^{-1}(f(A))$ { If f is injective, then $A = f^{-1}(f(A))$ }, (iv) $f(f^{-1}(B)) \subseteq B\{If f \text{ is surjective, then } f(f^{-1}(B))=B\},\$ (v) $f^{-1}(\cup B_i) = \cup f^{-1}(B_i)$ (vi) $f^{-1}(\cap B_i) = \cap f^{-1}(B_i)$ (vii) $f(\bigcup B_i) = \bigcup f(B_i)$ (viii) $f(\cap B_i) \subseteq \cap f(B_i)$ { If f is injective, then $f(\cap B_i) = \cap f(B_i)$ } (ix) $f^{-1}(1 \sim) = 1 \sim .$ (x) $f^{-1}(0 \sim) = 0 \sim$, (xi) f (1~) = 1~, if f is surjective (xii) f (0~) = 0~, (xiii) $f(A) \subseteq f(\overline{A})$, if f is surjective,

(xiv) $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$.

Definition 2.8[21]

A family τ_u Intuitionistic fuzzy sets on X is called an Intuitionistic fuzzy supra topology(in short, IFST) on X

if $0 \sim \in \tau_{\mu}, 1 \sim \in \tau_{\mu}$ and τ_{μ} is closed under arbitrary suprema.

Then we call the pair (X, τ_{μ}) an Intuitionistic fuzzy supra topological space (in short, IFSTS).

Each member of τ_{μ} is called an Intuitionistic fuzzy supra open set and the complement of an Intuitionistic fuzzy supra open set is called an Intuitionistic fuzzy supra closed set.

Definition 2.9[21]

The Intuitionistic fuzzy supra closure of a set A is denoted by S-cl(A) and is defined as

S-cl (A) = \cap {B : B is Intuitionistic fuzzy supra closed and A \subseteq B}.

The Intuitionistic fuzzy supra interior of a set A is denoted by S-int(A) and isdefined as

S-int(A) = \cup {B : B is Intuitionistic fuzzy supra open and A \supseteq B}

Definition 2.10 [21]

(i). \neg (AqB) \Leftrightarrow A \subseteq B^C.

(ii). A is an Intuitionistic fuzzy supra closed set in $X \Leftrightarrow S$ -cl (A) = A.

(iii). A is an Intuitionistic fuzzy supra open set in $X \Leftrightarrow S$ -int (A) = A.

(iv). $S-cl(A^{C}) = (S-int(A))^{C}$. (v). $S-int(A^{C}) = (S-cl(A))^{C}$.

(vi). $A \subseteq B \Longrightarrow S\text{-int}(A) \subseteq S\text{-int}(B)$.

(vii). $A \subseteq B \Longrightarrow S\text{-cl}(A) \subseteq S\text{-cl}(B)$.

(viii). $S-cl(A\cup B) = S-cl(A)\cup S-cl(B)$.

(ix). S-int($A \cap B$) = S-int(A) \cap S-int(B).

Definition 2.11

Let (X, τ_{μ}) be an Intuitionistic fuzzy supra topological space. An IFS $A \in IF(X)$ is called

(i) Intuitionistic fuzzy semi-supra open[12] iff $A \subseteq S$ -cl(S-int(A)),

(ii) Intuitionistic fuzzy α -supra open[11] iff A \subseteq S-int(S-cl(S-int(A))),

(iii) Intuitionistic fuzzy pre-supra open [13]iff $A \subseteq$ S-int(S-cl(A)).

Definition 2.12: [21]

Let $(X, \tau\mu)$ and $(Y, \sigma\mu)$ be two Intuitionistic fuzzy supra topological spaces and let f: $X \rightarrow Y$ be a function. Then f is said to be

(i) Intuitionistic fuzzy supra continuous if the pre image of each Intuitionistic fuzzy supra open set of Y is an Intuitionistic fuzzy supra open set in X.

- (ii) Intuitionistic fuzzy supra closed if the image of each intuitionisic fuzzy supra closed set in X is an Intuitionistic fuzzy supra closed set in Y.
- (iii) Intuitionistic fuzzy supra open if the image of each intuitionisic fuzzy supra open set in X is an Intuitionistic fuzzy supra open set in Y.

.3. INTUITIONISTIC FUZZY γ SUPRA OPEN SETS

Definition 3.1.

Let $(X, \tau\mu)$ is a Intuitionistic fuzzy supra topological space and $A \subseteq X$. Then A is said to be Intuitionistic fuzzy γ supra open(briefly IF γ s open) set if $A \subseteq s$ -cl(s-int(A)) \cup s-int(s-cl(A)).

The complement of Intuitionistic fuzzy γ supra open set is called Intuitionistic fuzzy γ supra closed set (briefly IF γ s closed).

Theorem 3.2.

Every Intuitionistic fuzzy supra open set is Intuitionistic fuzzy γ supra open.

Proof.

Let A be a Intuitionistic fuzzy supra open set in $(X, \tau\mu)$ since $A \subseteq s-cl(A)$ and $A = s-int(A)s-int(A) \subseteq s-int(s-cl(A))$ and then $s-int(A)\subseteq s-cl(s-int(A))$ which implies $s-int(A)\subseteq s-cl(s-int(A))\cup s-int(s-cl(A))$. Hence $A \subseteq s-int(A) \subseteq s-cl(s-int(A)) \cup s-int(s-cl(A))$ and A is Intuitionistic fuzzy γ supra open in $(X, \tau\mu)$ The converse of the above theorem need not be true as shown by the following example.

Let X={ a,b} and U ={x, (0.3,0.5), (0.6,0.7)} V ={x, (0.5,0.3), (0.4,0.5)} and W={x, (0.5,0.5), (0.5,0.5)}, τ_{μ} ={0~, U, V, UU V, 1~} Then W is called an Intuitionistic fuzzy γ -supra open but not an Intuitionistic fuzzy supra open set.

Theorem 3.3.

Every Intuitionistic fuzzy semi supra open set is Intuitionistic fuzzy γ supra open.

Proof.

Let A be a a Intuitionistic fuzzy semi supra open set in $(X, \tau\mu)$ Then A \subseteq s-cl(s-int(A)). Hence A \subseteq s-cl(s-int(A))Us-int(s-cl(A))and A is Intuitionistic fuzzy γ supra open in $(X, \tau\mu)$ The converse of the above theorem need not be true as shown by the following examples. **Example 3.4.**

Let $X = \{a, b\}$ and $U = \{x, (0.5, 0.6), (0.8, 0.6)\}$ $V = \{x, (0.4, 0.5), (0.9, 0.8)\}$ and $W = \{x, (0.5, 0.6), (0.5, 0.6)\}$

 $\tau_{\mu}=\{0\sim,U,V,U\cup V,1\sim\}$ Then W is called an Intuitionistic fuzzy γ -supra open but not an Intuitionistic fuzzy semi supra open set.

Theorem 3.5.

Every a Intuitionistic fuzzy pre supra open set is a Intuitionistic fuzzy γ supra open.

Proof.

Let A be a a Intuitionistic fuzzy pre supra open set in $(X, \tau\mu)$ Then A \subseteq s-int(s-cl(A)). Hence s-cl(A) \subseteq s-cl(s-int(A)) \cup s-int(s-cl(A))and A is Intuitionistic fuzzy γ supra open in $(X, \tau\mu)$

Example 3.6.

Let $X = \{a, b\}$ and $U = \{x, (0.3, 0.4), (0.6, 0.4)\} V = \{x, (0.2, 0.3), (0.7, 0.6)\}$ and $W = \{x, (0.3, 0.4), (0.3, 0.4)\}$,

 $\tau_{\mu}=\{0\sim, U, V, U\cup V, \}$ Then W is called an Intuitionistic fuzzy γ -supra open but not an Intuitionistic fuzzy pre-supra open set.

Theorem 3.7.

Every Intuitionistic fuzzy α supra open set is Intuitionistic fuzzy γ supra open.

Proof.

Let A be a Intuitionistic fuzzy α supra open set in $(X, \tau\mu)$ Then A \subseteq s-int(s-cl(s-int(A))). Hence A \subseteq s-int(s-cl(s-int(A))) \subseteq s-cl(s-int(A)) \subseteq s-cl(s-in

Example 3.8.

Let $X = \{a, b\}$ and $U = \{x, (0.2, 0.4), (0.3, 0.4)\} V = \{x, (0.3, 0.2), (0.4, 0.3)\}$ and $W = \{x, (0.3, 0.3), (0.3, 0.3)\}$,

 $\tau\mu = \{0, U, V, U \cup V, 1^{\sim}\}$ Then W is called an Intuitionistic fuzzy γ -supra open but not an Intuitionistic fuzzy α supra open set.

Theorem 3.9.

(i) Arbitrary union of two Intuitionistic fuzzy γ supra open sets in $(X, \tau\mu)$ is not a Intuitionistic fuzzy γ supra open sets in $(X, \tau\mu)$ (ii) Finite intersection of two Intuitionistic fuzzy γ supra open sets may fail to be Intuitionistic fuzzy γ supra open.

Proof.

(i) Let A and B be two Intuitionistic fuzzy γ supra open sets. Then, A \subseteq s-cl(s-int(A)) \cup s-int(s-cl(A)) and B \subseteq s-cl(Int(B)) \cup s-int(cl(B)). Then A \cup B \subseteq [s-cl(s-int(A)) \cup s-int(s-cl(A))] \cup [s-cl(s-int(B)) \cup s-int(s-cl(B))] \subseteq s-cl(s-int(s-cl(A))) \cup s-int(s-cl(A)) \cup s-int(s-cl(A))) \cup s-int(s-cl(A))) \cup s-int(s-cl(A))) \cup s-int(s-cl(A))) \cup s-cl(s-int(s-cl(A))) \cup s-cl(s-int(s-cl(A)))) \subseteq s-cl(s-int(s-cl(A))) \cup s-int(s-cl(A))) \subseteq s-cl(s-int(s-cl(A))) \cup s-int(s-cl(A)) \cup s-int(s-cl(A)) \cup s-int(s-cl(A)) \cup s-int(s-cl(A)) \cup s-cl(s-int(s-cl(A))) \cup s-int(s-cl(A)) \cup s-cl(s-int(s-cl(A))) \cup s-int(s-cl(A)) \cup s-cl(s-int(s-cl(A))) \cup s-int(s-cl(A)) \cup s-cl(s-int(s-cl(A))) \cup s-cl(A))

(ii) It is obvious

Remark.3.10

It is clear that IF γ s-int(A) is a Intuitionistic fuzzy γ supra open and Intuitionistic fuzzy γ supra cl(A) is a Intuitionistic fuzzy γ supra closed set.

Proposition 3.11.

The intersection of a Intuitionistic fuzzy α supra open set and a Intuitionistic fuzzy γ supra open set is a Intuitionistic fuzzy γ supra open set. **Theorem 3.12.**

Let X be an Intuitionistic fuzzy supra open spaces. If A and B are two supra sets of X, then

(i) $X - IF\gamma s-int(A) = IF\gamma s-cl(X - A)$

(ii) $X - IF\gamma s-cl(A) = IF\gamma s-int(X - A)$

(iii) If $A \subseteq B$, then $IF\gamma s\text{-cl}(A) \subseteq IF\gamma s\text{-cl}(B)$ and $IF\gamma s\text{-int}(A) \subseteq IF\gamma s\text{-int}(B)$

Proof.

It is obvious.

Theorem 3.13.

Let X be an Intuitionistic fuzzy supra open spaces. If A and B are two sub sets of X, then

(i) IF γ s-int(A) \cup IF γ s-int(B) \subseteq IF γ s-int(A \cup B)

(ii) IF γ s-int(A \cap B) \subseteq IF γ s-int(A) \cap IF γ s-int(B)

(iii) If $A \subseteq B$, then IFys-cl(A) \subseteq IFys-cl(B) and IFys-int(A) \subseteq IFys-int(B)

Proof. It is obvious.

4. Intuitionistic fuzzy γ supra Continuity Definition 4.1.

Let (X, τ_{μ}) and (Y, σ_{μ}) be Intuitionistic fuzzy supra topological spaces. Then a mapping $f : (X, \tau_{\mu}) \rightarrow (Y, \sigma_{\mu})$ is Intuitionistic fuzzy γ supra continuous on X if the inverse image of every Intuitionistic fuzzy γ supra open set in Y is a Intuitionistic fuzzy supra open in X.

Example 4.2

Let $X = \{a, b\}, Y = \{u, v\}$ and U= $\{<0.5, 0.2>, <0.3, 0.4>\},$ V= $\{<0.3, 0.4>, <0.6, 0.5>\},$ W= $\{<0.5, 0.4>, <0.3, 0.4>\},$ Z= $\{<0.3, 0.4>, <0.6, 0.5>\}.$ Then $\tau_{\mu} = \{0, 1, V, U \cup V\}$ be an Intuitionistic fuzzy supra topology on X. Then the Intuitionistic fuzzy supra topology σ_{μ} on Y is defined as follows:

$\sigma_{\mu} = \{0 \sim, 1 \sim, W, Z, W \cup Z\}.$

Define a mapping $f(X, \tau_{\mu}) \rightarrow (Y, \sigma_{\mu})$ by f(a) = u and f(b) = v. The inverse image of the IFsOS in Y is not an IFsOS in X but it is an IFsyOS. Then f is an Intuitionistic fuzzy supra γ -continuous map but not be an Intuitionistic fuzzy supra continuous map

Theorem 4.3.

A function $f:(X, \tau\mu) \rightarrow (Y, \sigma_{\mu})$ is Intuitionistic fuzzy γ supra continuous if and only if the inverse image of every Intuitionistic fuzzy γ supra closed set in Y is Intuitionistic fuzzy supra closed in X

Proof.

Let f be Intuitionistic fuzzy γ supra continuous and F be Intuitionistic fuzzy γ supra closed in Y. That is, Y-F is Intuitionistic fuzzy γ supra open in Y. Since f is Intuitionistic fuzzy supra continuous, $f^{-1}(F)$ is Intuitionistic fuzzy supra closed in X. thus the inverse image of every Intuitionistic fuzzy γ supra closed set in Y is Intuitionistic fuzzy supra closed in X, if f is Intuitionistic fuzzy supra continuous in X.

Conversely, let the inverse image of every Intuitionistic fuzzy γ supra closed set be IF closed. Let g be Intuitionistic fuzzy γ supra open in Y.Then Y – G is Intuitionistic fuzzy γ supra closed in Y. then f⁻¹(Y-G) is Intuitionistic fuzzy supra closed in X. That is, X– f⁻¹(G) is Intuitionistic fuzzy supra closed in X. Therefore $f^{-1}(G)$ is Intuitionistic fuzzy supra open in X. Thus, the inverse image of every Intuitionistic fuzzy γ supra open set in Y is Intuitionistic fuzzy supra open in X. That is, f is Intuitionistic fuzzy γ supra continuous on X.

Theorem 4.4.

A function $f: (X, \tau_u) \to (Y, \sigma_u)$ is Intuitionistic fuzzy γ supra continuous if and only iff (IF γ s-cl(A)) \subseteq IF γ s-cl(f(A)) for every sub setA of X

Proof.

Let f be Intuitionistic fuzzy γ supra continuous and A \subseteq X. Then f(A) \subseteq Y. IF γ s-cl(f(A)) is Intuitionistic fuzzy γ supra closed in Y. Since f is IF γ supra continuous, $f^{-1}(IF\gamma s-cl(f(A)))$ is Intuitionistic fuzzy supra closed in X. Since $f(A) \subseteq IF\gamma s-cl(f(A))$, $A \subseteq f^{-1}(IF\gamma s-cl(f(A)))$. Thus $f^{-1}(IF\gamma s-cl(f(A)))$ is Intuitionistic fuzzy γ supra closed set containing A. Therefore $IF\gamma s-cl(A) \subseteq f^{-1}(IF\gamma s-cl(A))$. That is, $f(IF\gamma s-cl(A)) \subseteq IF\gamma s-cl(A)$. cl(f(A)).

Conversely, let $f(IF\gamma s-cl(A)) \subseteq IF\gamma s-cl(f(A))$ for every sub set A of X. If F is Intuitionistic fuzzy γ supra closed in Y, since $f^{-1}(F) \subseteq X$, $f(IF\gamma s-cl(f^{-1}(F))) \subseteq IF\gamma s-cl(f(f^{-1}(F))) \subseteq IF\gamma s-cl(F)$. That is, $IF\gamma s-cl(f^{-1}(F) \subseteq f^{-1}IF\gamma s-cl((F))$. Therefore, $IF\gamma s-cl(f^{-1}(F)) = f^{-1}(F)$. Therefore, $f^{-1}(F) \subseteq f^{-1}(F) = f^{-1}(F)$. is Intuitionistic fuzzy supra closed in X for every Intuitionistic fuzzy γ supra closed set F in Y. That is f is fuzzy γ supra continuous.

Theorem 4.5.

A function $f: (X, \tau_{\mu}) \rightarrow (Y, \sigma_{\mu})$ is Intuitionistic fuzzy γ supra continuous if and only if IF γ s -cl ($f^{-1}(B)$) $\subseteq f^{-1}(IF\gamma$ s-cl(B)) for every sub set B of Y.

Proof.

Let f be a Intuitionistic fuzzy γ supra continous and B \in Y, IF γ s-cl(B) is Intuitionistic fuzzy γ supra closed in Y and hence f⁻¹ (IF γ s-cl(B)) is Intuitionistic fuzzy supra closed in X. Therefore, $[IF\gamma s-cl(B))] = f^{-1}(IF\gamma s-cl(B))$. Since $B \subseteq IF\gamma s-cl(B)$,

 $f^{-1}(B) \subseteq f^{-1}(IF\gamma s-cl(B))$. Therefore, $IF\gamma s-cl(f^{-1}(B)) \subseteq IF\gamma s$ ($f^{-1}(IF\gamma s-cl(B)))=f^{-1}(IF\gamma s-cl(B))$. That is, $IF\gamma s-cl(f^{-1}(B)) \subseteq f^{-1}IF\gamma s-cl(B))$ for every B \in Y. Let B be Intuitionistic fuzzy γ supra closed in Y. Then IF γ s-cl(B) = B. By assumption, IF γ s-clf⁻¹ (B) \subseteq f⁻¹ (IF γ s-cl(B)) = f ⁻¹(B). Thus, IFys-clf⁻¹(B) \subseteq f⁻¹(B). But f⁻¹(B) \subseteq IFys-cl(f⁻¹(B)). Therefore, IFys-cl(f⁻¹(B)) = f⁻¹(B). That is,

 $f^{-1}(B)$ is Intuitionistic fuzzy supra closed in X for every Intuitionistic fuzzy γ supra closed set B in Y. Therefore, f is Intuitionistic fuzzy γ supra continuous on X

REFERENCES

- [1] M. E. Abd El-Monsef and A. E. Ramadan, On fuzzy supra topological spaces, Indian J. Pure and Appl. Math. no.4, 18(1987), 322-329.
- [2]. D. Andrijevic, b open sets, Math. Vesnik, 48(1) (1996), 59-64.
- [3]. Atnassova K., "Intuitionistic fuzzy Sets", Fuzzy Sets and Systems, 20, 87-96,(1986).
- [4] Chang C.L. "Fuzzy Topological Spaces", J. Math. Anal. Appl. 24 182-190,(1968).
- [5] Coker, D. An introduction to Intuitionistic fuzzy topological spaces, Fuzzy SetsAnd Systems 88, 81-89, 1997.
- [6]. P.Deepika, S.Chandrasekar, "Fine GS Closed Sets and Fine SG Closed Sets in Fine Topological Space", International Journal of Mathematics Trends and Technology (IJMTT). V56(1),8-14, April, 2018.
- [7].P.Deepika, S.Chandrasekar, F-gs Open, F-gs Closed and F-gs Continuous Mappings in Fine Topological Spaces, International Journal of Engineering, Science and Mathematics Vol. 7 (4), April 2018, 351-359.
- [8].P.Deepika, S.Chandrasekar, M. Sathyabama, Properties Of Fine Generalized Semi Closed Sets In Fine Topological Spaces Journal Of Computer And Mathematical Sciences Vol 9, No.4, April (2018), 293-301.
- [9]. A.S. Mashhour, A.A.Allam, F.S. Mahmoud and F.H.Khedr, "On supra topological spaces", Indian J. Pure and Appl. vol. 4,14(1983), 502-510.
- [10]. M. Parimala, C.Indirani, "Intuitionistic fuzzy β -supra open sets and Intuitionistic fuzzy β supra continuous mapping", Notes on Intuitionistic fuzzy sets, 20(2014), 6-12.
- [11].M. Parimala, Jafari Saeid, Intuitionistic fuzzy α -supra continuous maps,"Annals of fuzzy mathematics and informatics", vol.9, 5(2015), 745-751.
- [12]. M. Parimala, C. Indirani, On Intuitionistic fuzzy Semi Supra Open Set and Intuitionistic Fuzzy Semi Supra Continuous Functions Procedia Computer Science 47 (2015), 319 - 325
- [13]. A.S. Mashhour, A.A.Allam, F.S. Mahmoud and F.H.Khedr, "On supra topological spaces", Indian J. Pure and Appl. vol. 4,14(1983), 502-510.
- [14].Selvaraj Ganesan, Sakkari Veeranan Chandrasekar, Another quasi µS-open and quasi µS-closed functions Journal of New Theory ,15,(2017),75-80.
- [15]. K.SafinaBegum, S.Chandarasekar, Totally Fine Sg Continuous Functions And Slightly Fine Sg Continuous Functions In Fine Topological Spaces, International Journals of Engineering, Science & Mathematics (IJESM), Vol 7, No4, April (2018),119-126.

© 2018 JETIR July 2018, Volume 5, Issue 7

[16].K.SafinaBegum,,S.Chandarasekar, quasi fine sg-open and quasi fine sg-closed functions in fine topological spaces, Journal Of Computer And Mathematical Sciences, Vol 9 No.4, April (2018), 245-253.

- [17] .S. Jeyashri, S. Chandrasekar, and M. Sathyabama, Soft b#-open Sets and Soft b#- continuous Functions in Soft Topological Spaces .International Journal of Mathematics and its Applications, 6(1-D), (2018), 651-658.
- [18].R.Selvaraj,S.Chandrasekar, Contra Supra*g-continuous Functions And Contra Supra*g -Irresolute Functions In Supra Topological Spaces .International Journal of Engineering, Science and Mathematics Vol. 7 I(4), April 2018, 127-133
- [19] .K.SafinaBegum,,S.Chandarasekar, Contra Fine Sg-Continuous Maps In Fine Topological Space, Journal of Global Research in Mathematical Archives ,Volume 5,issue 4, 37-43,April 2018.
- [20].R.Selvaraj, S.Chandrasekar, "Supra*g-Closed Sets in Supra Topological Spaces", .International Journal of MathematicTrends and Technology (IJMTT). V56 (1):15-20, April 2018.
- [21].N. Turnal, "On Intuitionistic fuzzy Supra topological Spaces", International Conference on Modeling and Simulation, Spain, vol.2, (1999) ,69-77.
- [22]. N. Turnal, "An over view of intuitionstic fuzzy Supra topological spaces". Hacettepe Journal of Mathematics and Statistics, vol.32 (2003), 17-26.
- [23].Zadeh, L. A. "Fuzzy sets", Information and Control, 8(1965), 338-353

