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Abstract:  In this article, Mahgoub Adomian Decomposition method (MADM) is proposed to determine the approximate solution 

of the nonlinear Fractional Differential Equations (FDEs). This method is a combined form of Mahgoub transform with Adomian 

decomposition method. The fractional derivatives are described in the Caputo sense. The results of numerical experiment show the 

efficiency of our newly developed method. 
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I. INTRODUCTION 

Fractional calculus is an important tool of mathematical analysis applied to the study of integrals and derivatives of 

arbitrary order. Nowadays, the fractional calculus has found extensive application in various fields such as rheology, quantitative 

electrochemistry, probability, potential theory, scattering theory, elasticity, diffusion, biology and transport theory [1]. Many 

researchers have shown their interest in finding the numerical solution of linear and nonlinear FDEs. Some methods are Differential 

Transform Method [2], Homotophy Analysis Method [3] and Adomian Decomposition Method [4].  

Integral transform methods have been proposed to find the analytical solution of linear FDE. Some of them are Laplace 

[5], Natural [6], Sumudu [7], Elzaki [8] and Mahgoub [9]. For solving nonlinear FDEs, the Adomian decomposition method was 

combined with Laplace transform method [10], with natural transform method [11], with Sumudu transform method [12] and with 

Elzaki transform method [13]. 

In this paper, the Mahgoub Adomian Decomposition method have been proposed for finding the numerical solution of 

nonlinear FDEs with Caputo derivatives. This paper has been organized as follows: Section 2 consists of basic definitions of 

fractional calculus and Mahgoub transform of fractional derivatives. Section 3 constructs the MADM for finding the numerical 

solutions for nonlinear fractional differential equations. Section 4 provides examples of FDE to illustrate the efficiency of this 

method. 

 

II. PRELIMINARIES AND NOTATIONS 

In this section, we give some basic definitions and properties of fractional calculus and Mahgoub transform. 

Definition 1:  

A real function 𝑓(𝑥), 𝑥 > 0 is said to be in the space 𝐶𝜇 , 𝜇 𝜖 ℝ if there exists a real number 𝑝 > 𝜇 such that 𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥) where 

𝑓1(𝑥) 𝜖 𝐶[0, ∞) and it is said to be in the space 𝐶𝜇
𝑚 if and only if 𝑓(𝑚) 𝜖 𝐶𝜇 , 𝑚 𝜖 ℕ. 

 

Definition 2:  

The Riemann-Liouville fractional integral operator of order 𝛼 ≥ 0, of a function 𝑓 𝜖 𝐶𝜇 , 𝜇 ≥ −1, is defined as   

𝐽𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡,

𝑥

0

𝛼 > 0, 𝑥 > 0, 

 𝐽0𝑓(𝑥) = 𝑓(𝑥)                   (1) 

Properties of the operator 𝐽𝛼 is given by 

i. 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥) 

ii. 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥) 

iii. 𝐽𝛼𝑥𝛾 =
Γ(𝛾+1)

Γ(𝛼+𝛾+1)
𝑥𝛼+𝛾 

  

Definition 3:  

The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 

 𝐷 
𝛼𝑓(𝑥) 

𝑐 =
1

Γ(𝑚−𝛼)
∫ (𝑥 − 𝑡)𝑚−𝛼−1𝑓𝑚(𝑡)𝑑𝑡.

𝑥

0
              (2) 

for 𝑚 − 1 < 𝛼 ≤ 𝑚 , 𝑚𝜖 ℕ, 𝑥 > 0 and 𝑓 𝜖 𝐶−1
𝑚

 

 
. 

Definition 4:  

Mahgoub transform is defined on the set of continuous functions and exponential order. We consider functions in the set A defined 

by 
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 𝐴 = {𝑓(𝑡): |𝑓(𝑡)| < 𝑃𝑒
|𝑡|

∈𝑖 𝑖𝑓𝑡 ∈ (−1)𝑖 × [0,∞),
 

 𝑖 = 1,2; ∈𝑖> 0}      

where ∈1, ∈2 may be finite or infinite and the constant P must be finite. 

Let 𝑓 ∈ 𝐴, then Mahgoub transform is defined as 

𝑀[𝑓(𝑡)] = 𝐻(𝑢) = 𝑢 ∫ 𝑓(𝑡)𝑒−𝑢𝑡𝑑𝑡, 𝑡 ≥ 0,
∞

0
∈1≤ 𝑢 ≤∈2                 (3) 

Mahgoub transform of simple functions are given below: 

 (𝑖)       𝑀[1] = 1                          

 (𝑖𝑖)      𝑀[𝑡] =
1

𝑢
                         

 (𝑖𝑖𝑖)    𝑀[𝑡2] =
2

𝑢2                                                  

 (𝑖𝑣)    𝑀[𝑡𝑛] =
𝑛!

𝑢𝑛 =
Γ(𝑛+1)

𝑢𝑛                  

Mahgoub Transform for derivatives are: 

(i)  𝑀[𝑓′(𝑡)] = 𝑢𝐻(𝑢) − 𝑢𝑓(0)         

 (𝑖𝑖)𝑀[𝑓′′(𝑡)] = 𝑢2𝐻(𝑢) − 𝑢2𝑓(0) − 𝑢𝑓′(0)                                         

(𝑖𝑖𝑖)𝑀[𝑓𝑛(𝑡)] = 𝑢𝑛𝐻(𝑢) − ∑ 𝑢𝑛−𝑘𝑓𝑘(0)𝑛−1
𝑘=0       

Lemma 5: [9] 

If  𝐻(𝑢) is Mahgoub transform of 𝑦(𝑥), then Mahgoub transform of Caputo derivative, for 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 𝜖 ℕ is 

 𝑀[ 𝐷 
𝛼𝑦(𝑥) 

𝑐 ] = 𝑢𝛼𝐻(𝑢) − ∑ 𝑢𝛼−𝑘𝑦𝑘(0)𝑚−1
𝑘=0               (4) 

 

III. CONSTRUCTION OF MADM METHOD 

Consider the following fractional differential equation 

 𝐷𝛼𝑦(𝑥) + 𝑎𝑚𝑦(𝑚)(𝑥) + 𝑎𝑚−1𝑦(𝑚−1)(𝑥) + ⋯ + 𝑎1𝑦′(𝑥) + 𝑎0𝑦(𝑥) + 𝑁(𝑦(𝑥), 𝑦′(𝑥), … , 𝑦𝑚−1(𝑥)) = 𝑓(𝑥) 
𝑐 , 𝑥 ≥ 0,      (5) 

for 𝑚 − 1 < 𝛼 ≤ 𝑚 , 𝑚𝜖 ℕ. 
Subject to the initial conditions 

               𝑦(𝑖)(0) = 𝑏𝑖 ,        𝑖 = 0,1,2, … , 𝑚 − 1               (6) 

where 𝑎𝑖 , 𝑏𝑖 are known real constants. N is a nonlinear operator and 𝑓(𝑥) is known function. Let [0, T] be the interval over which 

we need to find the solution of the above initial value problem. 

 

Applying the Mahgoub transform to both sides of equation (5) and by using the linearity of Mahgoub transforms, the result is                    

𝑀( 𝐷𝛼𝑦(𝑥)) + 𝑎𝑚𝑀(𝑦(𝑚)(𝑥)) + 𝑎𝑚−1𝑀(𝑦(𝑚−1)(𝑥)) + ⋯ + 𝑎1𝑀(𝑦′(𝑥)) + 𝑎0𝑀(𝑦(𝑥)) + 𝑀 (𝑁 (𝑦(𝑥), 𝑦′(𝑥), . . , 𝑦(𝑚−1)(𝑥))) = 𝑀(𝑓(𝑥)) 
𝑐  

 

Using above Lemma and applying the formulas of Mahgoub transform, we get 

𝑢𝛼𝑀(𝑦(𝑥)) = ∑ 𝑢𝛼−𝑘𝑦𝑘(0)

𝑚−1

𝑘=0

+ 𝑀(𝑓(𝑥)) − 𝑎𝑚𝑀(𝑦(𝑚)(𝑥)) − 𝑎𝑚−1𝑀(𝑦(𝑚−1)(𝑥)) − ⋯ − 𝑎1𝑀(𝑦′(𝑥)) 

                                                                                                       −𝑎0𝑀(𝑦(𝑥)) − 𝑀 (𝑁 (𝑦(𝑥), 𝑦′(𝑥), … , 𝑦(𝑚−1)(𝑥)))     

𝑀(𝑦(𝑥)) =
1

𝑢𝛼
∑ 𝑢𝛼−𝑘𝑦𝑘(0)𝑚−1

𝑘=0 +
1

𝑢𝛼 𝑀(𝑓(𝑥)) −
1

𝑢𝛼 [𝑎𝑚𝑀(𝑦(𝑚)(𝑥)) + 𝑎𝑚−1𝑀(𝑦(𝑚−1)(𝑥)) + ⋯ + 𝑎1𝑀(𝑦′(𝑥)) + 𝑎0𝑀(𝑦(𝑥))]  

       −
1

𝑢𝛼 𝑀 (𝑁 (𝑦(𝑥), 𝑦′(𝑥), … , 𝑦(𝑚−1)(𝑥)))        (7) 

The MADM represents the solution as an infinite series 

 𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)∞
𝑛=0                 (8) 

and the nonlinear term 𝑁 (𝑦(𝑥), 𝑦′(𝑥), … , 𝑦(𝑚−1)(𝑥)) is decomposed in Adomian polynomials as  

 𝑀 (𝑁 (𝑦(𝑥), 𝑦′(𝑥), … , 𝑦(𝑚−1)(𝑥))) = ∑ 𝐴𝑛
∞
𝑛=0                 (9) 

For the nonlinear function 𝑁𝑦 = 𝑓(𝑦) the first five Adomian polynomials are given by 

              𝐴0 = 𝑓(𝑦0),        

              𝐴1 = 𝑓(1)(𝑦0)𝑦1, 

              𝐴2 = 𝑓(1)(𝑦0)𝑦2 +
1

2!
𝑓(2)(𝑦0)𝑦1

2 

              𝐴3 = 𝑓(1)(𝑦0)𝑦3 + 𝑓(2)(𝑦0)𝑦1𝑦2 +
1

3!
𝑓(3)(𝑦0)𝑦1

3, 

              𝐴4 = 𝑓(1)(𝑦0)𝑦4 + 𝑓(2)(𝑦0) [
1

3!
𝑦2

2 + 𝑦1𝑦3] + 𝑓(3)(𝑦0)
1

2
𝑦1

2𝑦2 + 𝑓(4)(𝑦0)
1

4!
𝑦1

4, 

 

Substituting Eqns. (8) and (9) into (7), we have 

 

𝑀 (∑ 𝑦𝑛(𝑥)

∞

𝑛=0

) =
1

𝑢𝛼
[ ∑ 𝑢𝛼−𝑘𝑓𝑘(0)

𝑚−1

𝑘=0

+ 𝑀(𝑓(𝑥))] −
1

𝑢𝛼
[𝑎𝑚𝑀 (∑ 𝑦𝑛

(𝑚)

 
(𝑥)

∞

𝑛=0

) + ⋯ + 𝑎1𝑀 (∑ 𝑦𝑛
′

 
(𝑥)

∞

𝑛=0

) + 𝑎0𝑀 (∑ 𝑦𝑛
 

 
(𝑥)

∞

𝑛=0

)] 

          −
1

𝑢𝛼 𝑀(∑ 𝐴𝑛
∞
𝑛=0 )        (10) 
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Hence the iterations are defined by the following recursive algorithm 

  

 𝑀(𝑦0(𝑥)) =
1

𝑢𝛼
∑ 𝑢𝛼−𝑘𝑓𝑘(0)𝑚−1

𝑘=0 +
1

𝑢𝛼 𝑀(𝑓(𝑥))             (11) 

 𝑀(𝑦𝑛(𝑥)) = −
1

𝑢𝛼 [𝑎𝑚𝑀 (𝑦𝑛−1
(𝑚)

 
(𝑥)) + 𝑎𝑚−1𝑀 (𝑦𝑛−1

(𝑚−1)

 
(𝑥)) + ⋯ + 𝑎1𝑀 (𝑦𝑛−1

′
 
(𝑥)) + 𝑎0𝑀(𝑦𝑛−1(𝑥))] −

1

𝑢𝛼 𝑀(𝐴𝑛−1),   

for 𝑛 = 1,2, …       (12) 

Using the initial conditions (6) and applying the inverse Mahgoub transform to Eqns. (11) and (12) we obtain the values 

𝑦0(𝑥), 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥) recursively. 

 

IV. NUMERICAL EXAMPLES 

 

Example 1 

 

Consider the nonlinear fractional differential equation 

              𝐷𝛼𝑦(𝑥) = 𝑦2 + 1 
𝑐 ,    𝑚 − 1 < 𝛼 ≤ 𝑚, 0 < 𝑥 ≤ 1,             (13) 

Subject to the initial conditions 

                𝑦(𝑖)(0) = 0,        𝑖 = 0,1,2, … , 𝑚 − 1              (14) 

Applying the Mahgoub transform in the Eqn. (13), then 

 𝑀( 𝐷𝛼𝑦(𝑥)) = 𝑀(𝑦2 + 1) 
𝑐  

Use the initial conditions (14), then we have 

             𝑀(𝑦(𝑥)) =
1

𝑢𝛼 (𝑀(𝑦2)) +
1

𝑢𝛼 

In the view of (10), we have 

 𝑀(∑ 𝑦𝑛(𝑥)∞
𝑛=0 ) =

1

𝑢𝛼 𝑀(∑ 𝐴𝑛
∞
𝑛=0 ) +

1

𝑢𝛼                        (15) 

The Mahgoub Adomian decomposition series has the form 

 𝑀(𝑦0) =
1

𝑢𝛼 

 𝑀(𝑦𝑛) =
1

𝑢𝛼 𝑀(𝐴𝑛−1(𝑥)),        𝑛 = 1,2,3, …  

where the Adomian polynomials for the nonlinearity 𝑓(𝑦) = 𝑦2 are 

              𝐴0 = 𝑦0
2, 

              𝐴1 = 2𝑦0𝑦1, 

              𝐴2 = 2𝑦0𝑦2 + 𝑦1
2, 

              𝐴3 = 2𝑦0𝑦3 + 2𝑦1𝑦2, 

              𝐴4 = 2𝑦0𝑦4 + 2𝑦1𝑦3 + 𝑦2
2.                           (16) 

Using the above recursive relation, the first few terms of the Mahgoub Adomian decomposition series are derived as follows: 

 𝑦0 =
𝑥𝛼

Γ(𝛼+1)
 

 𝑦1 =
Γ(2𝛼+1)

Γ2(𝛼+1)Γ(3𝛼+1)
𝑥3𝛼 

              𝑦2 =
2Γ(2𝛼+1)Γ(4𝛼+1)

Γ3(𝛼+1)Γ(3𝛼+1)Γ(5𝛼+1)
𝑥5𝛼 

              𝑦3 =
Γ2(2𝛼+1)Γ(6𝛼+1)

Γ4(𝛼+1)Γ2(3𝛼+1)Γ(7𝛼+1)
𝑥7𝛼 +

4Γ(2𝛼+1)Γ(4𝛼+1)Γ(6𝛼+1)

Γ4(𝛼+1)Γ(3𝛼+1)Γ(5𝛼+1)Γ(7𝛼+1)
𝑥7𝛼 

etc. 

The approximate solution is given by 

 

 𝑦 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ 

i.e. 𝑦(𝑥) =
𝑥𝛼

Γ(𝛼+1)
+

Γ(2𝛼+1)

Γ2(𝛼+1)Γ(3𝛼+1)
𝑥3𝛼 +

2Γ(2𝛼+1)Γ(4𝛼+1)

Γ3(𝛼+1)Γ(3𝛼+1)Γ(5𝛼+1)
𝑥5𝛼 +

Γ2(2𝛼+1)Γ(6𝛼+1)

Γ4(𝛼+1)Γ2(3𝛼+1)Γ(7𝛼+1)
𝑥7𝛼 + ⋯ 

 

Table 1 shows the solution of Example 1 for different values of 𝛼. The value 𝛼 = 1 (ODE) is the only case for which we know the 

exact solution 𝑦 = 𝑡𝑎𝑛𝑥 and our approximate solution is in good agreement with the exact values. The accuracy can be improved 

by computing more terms of approximate solution. 
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Table 1: Solution of Example 1  

 

𝒙 
𝜶 = 𝟏 

𝜶 = 𝟎. 𝟓 𝜶 = 𝟏. 𝟓 𝜶 = 𝟐. 𝟓 𝜶 = 𝟑. 𝟓 
Exact MADM 

0.1 0.1003 0.100335 0.391973 0.023790 0.000952 0.000027 

0.2 0.2027 0.202710 0.623723 0.067330 0.005383 0.000308 

0.3 0.3093 0.309336 0.890186 0.123896 0.014833 0.001271 

0.4 0.4228 0.422793 1.254167 0.191362 0.030450 0.003480 

0.5 0.5463 0.546302 1.800674 0.268856 0.053197 0.007599 

0.6 0.6841 0.684131 2.654936 0.356238 0.083925 0.014384 

0.7 0.8423 0.842245 3.996807 0.453950 0.123412 0.024672 

0.8 1.0296 1.029372 6.075247 0.563007 0.172391 0.039371 

0.9 1.2602 1.258799 9.223523 0.685056 0.231574 0.059458 

1.0 1.5574 1.551368 13.875249 0.822511 0.301676 0.085975 

 

Example 2 

 

Consider the nonlinear fractional differential equation 

              𝐷𝛼𝑦(𝑥) = 2𝑦 − 𝑦2 + 1 
𝑐 ,    0 < 𝛼 ≤ 1, 0 < 𝑥 ≤ 1,             (17) 

Subject to the initial condition 

 𝑦(0) = 0                     (18) 

Applying the Mahgoub transform in the Eqn. (17), then 

 𝑀( 𝐷𝛼𝑦(𝑥)) = 𝑀(2𝑦 − 𝑦2 + 1) 
𝑐  

Use the initial conditions (18), then we have 

             𝑀(𝑦(𝑥)) =
2

𝑢𝛼 𝑀(𝑦(𝑥)) −
1

𝑢𝛼 (𝑀(𝑦2)) +
1

𝑢𝛼 

In the view of (10), we have 

 𝑀(∑ 𝑦𝑛(𝑥)∞
𝑛=0 ) =

2

𝑢𝛼 𝑀(∑ 𝑦𝑛(𝑥)∞
𝑛=0 ) −

1

𝑢𝛼 𝑀(∑ 𝐴𝑛(𝑥)∞
𝑛=0 ) +

1

𝑢𝛼           (19) 

The Mahgoub Adomian decomposition series has the form 

 𝑀(𝑦0) =
1

𝑢𝛼 

 𝑀(𝑦𝑛) =
2

𝑢𝛼 𝑀(𝑦𝑛−1) −
1

𝑢𝛼 𝑀(𝐴𝑛−1(𝑥)),        𝑛 = 1,2,3, …  

where the Adomian polynomials for the nonlinearity 𝑓(𝑦) = 𝑦2 are given in (16) 

 

Using the above recursive relation, the first few terms of the Mahgoub Adomian decomposition series are derived as follows: 

               𝑦0 =
𝑥𝛼

Γ(𝛼+1)
 

               𝑦1 =
2𝑥2𝛼

Γ(2𝛼+1)
−

Γ(2𝛼+1)

Γ2(𝛼+1)Γ(3𝛼+1)
𝑥3𝛼 

               𝑦2 =
4𝑥3𝛼

Γ(3𝛼+1)
−

2Γ(2𝛼+1)

Γ2(𝛼+1)Γ(4𝛼+1)
𝑥4𝛼 −

4Γ(3𝛼+1)

Γ(𝛼+1)Γ(2𝛼+1)Γ(4𝛼+1)
𝑥4𝛼 +

2Γ(2𝛼+1)Γ(4𝛼+1)

Γ3(𝛼+1)Γ(3𝛼+1)Γ(5𝛼+1)
𝑥5𝛼 

etc., 

The approximate solution is  

  

 𝑦 =
𝑥𝛼

Γ(𝛼+1)
+

2𝑥2𝛼

Γ(2𝛼+1)
−

Γ(2𝛼+1)

Γ2(𝛼+1)Γ(3𝛼+1)
𝑥3𝛼 +

4𝑥3𝛼

Γ(3𝛼+1)
−

2Γ(2𝛼+1)

Γ2(𝛼+1)Γ(4𝛼+1)
𝑥4𝛼 −

4Γ(3𝛼+1)

Γ(𝛼+1)Γ(2𝛼+1)Γ(4𝛼+1)
𝑥4𝛼 + ⋯ 

 

Table 2 shows the approximate solution of Example 2 for  0 < 𝑥 ≤ 1 and for different values of 𝛼. 
 

The Exact solution of Eqn. (17) for 𝛼 = 1 (ODE) is  

 𝑦 = 1 + √2𝑡𝑎𝑛ℎ (√2𝑥 +
1

2
𝑙𝑛 (

√2−1

√2+1
)) 
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Table 2: Solution of Example 2 

 

𝒙 𝜶 = 𝟎. 𝟓 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟗𝟓 
𝜶 = 𝟏 

Exact MADM 

0.1 0.594392 0.245432 0.128805 0.1103 0.110295 

0.2 0.942711 0.475268 0.275732 0.2420 0.241977 

0.3 1.184161 0.711247 0.443633 0.3951 0.395122 

0.4 1.334191 0.942106 0.629672 0.5678 0.567934 

0.5 1.411321 1.154790 0.828257 0.7560 0.756482 

0.6 1.437452 1.338353 1.031670 0.9536 0.954756 

0.7 1.436222 1.486138 1.230948 1.1529 1.155089 

0.8 1.431643 1.597212 1.417081 1.3464 1.348968 

0.9 1.447121 1.677276 1.582473 1.5269 1.528179 

1 1.504798 1.739135 1.722571 1.6895 1.676254 

 

 

Example 3 

 

Consider the nonlinear fractional differential equation 

              𝐷𝛼𝑦(𝑥) = 1 + 𝑦(𝑥) + 𝑦′2
(𝑥) − 𝑦2(𝑥) 

𝑐 ,    1 < 𝛼 ≤ 2, 0 < 𝑥 < 1,              (20) 

Subject to the initial condition 

 𝑦(0) = 1,   𝑦′(0) = 0                    (21) 

Applying the Mahgoub transform in the Eqn. (20), then 

 𝑀( 𝐷𝛼𝑦(𝑥)) = 𝑀(1 + 𝑦(𝑥) + 𝑦′2
(𝑥) − 𝑦2(𝑥)) 

𝑐  

              𝑢𝛼𝑀(𝑦(𝑥)) − 𝑢𝛼𝑦(0) − 𝑢𝛼−1𝑦′(0) = 1 + 𝑀(𝑦(𝑥)) + 𝑀(𝑦′2
(𝑥) − 𝑦2(𝑥)) 

Use the initial conditions (21), then we have 

 𝑀(𝑦(𝑥)) = (1 +
1

𝑢𝛼) +
1

𝑢𝛼 (𝑀(𝑦(𝑥)) + 𝑀(𝑦′2
(𝑥) − 𝑦2(𝑥)))             

In the view of (10), we have 

 𝑀(∑ 𝑦𝑛(𝑥)∞
𝑛=0 ) = (1 +

1

𝑢𝛼) +
1

𝑢𝛼
(∑ 𝑦𝑛(𝑥)∞

𝑛=0 ) + 𝑀(∑ 𝐴𝑛(𝑥)∞
𝑛=0 )             (22) 

The Mahgoub Adomian decomposition series has the form 

 𝑀(𝑦0) = (1 +
1

𝑢𝛼)  

              𝑀(𝑦𝑛) =
1

𝑢𝛼 𝑀(𝑦𝑛−1) +
1

𝑢𝛼 𝑀(𝐴𝑛−1(𝑥)),        𝑛 = 1,2,3, …  

where the Adomian polynomials for the nonlinearity 𝑓(𝑦) = 𝑦′2
− 𝑦2 are 

               𝐴0 = 𝑦0
′2

− 𝑦0
2, 

               𝐴1 = 2𝑦0
′𝑦1

′ − 2𝑦0𝑦1, 

              𝐴2 = (2𝑦0
′𝑦2

′ + 𝑦1
′2

) − (2𝑦0𝑦2 + 𝑦1
2) 

𝐴3 = (2𝑦0
′𝑦3

′ + 2𝑦1
′𝑦2

′) − (2𝑦0𝑦3 + 2𝑦1𝑦2), 

𝐴4 = (2𝑦0
′𝑦4

′ + 2𝑦1
′𝑦3

′ + 𝑦2
′2

) − (2𝑦0𝑦4 + 2𝑦1𝑦3 + 𝑦2
2). 

  

Using the above recursive relation, the first few terms of the Mahgoub Adomian decomposition series are derived as follows: 

 

𝑦0 = 1 +
𝑥𝛼

Γ(𝛼 + 1)
 

𝑦1 = −
𝑥2𝛼

Γ(2𝛼 + 1)
+

𝛼2Γ(2𝛼 − 1)

Γ2(𝛼 + 1)Γ(2𝛼)
𝑥2𝛼−1 −

Γ(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(2𝛼 + 2)
𝑥2𝛼+1 

𝑦2 = −
𝑥3𝛼

Γ(3𝛼 + 1)
+

𝛼2Γ(2𝛼 − 1)

Γ2(𝛼 + 1)Γ(3𝛼)
𝑥3𝛼−1 −

Γ(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(3𝛼 + 2)
𝑥3𝛼+1 −

4𝛼2Γ(3𝛼 − 1)

Γ(𝛼 + 1)Γ(2𝛼 + 1)Γ(4𝛼 − 1)
𝑥4𝛼−2

+
2𝛼3(2𝛼 − 1)Γ(2𝛼 − 1)Γ(3𝛼 − 2)

Γ3(𝛼 + 1)Γ(2𝛼)Γ(4𝛼 − 2)
𝑥4𝛼−3 

 

etc. 

The approximate solution is  
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𝑦 = 1 +
𝑥𝛼

Γ(𝛼 + 1)
−

𝑥2𝛼

Γ(2𝛼 + 1)
−

𝛼2Γ(2𝛼 − 1)

Γ2(𝛼 + 1)Γ(2𝛼)
𝑥2𝛼−1 −

Γ(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(2𝛼 + 2)
𝑥2𝛼+1 −

𝑥3𝛼

Γ(3𝛼 + 1)
−

𝛼2Γ(2𝛼 − 1)

Γ2(𝛼 + 1)Γ(3𝛼)
𝑥3𝛼−1

−
Γ(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(3𝛼 + 2)
𝑥3𝛼+1 −

4𝛼2Γ(3𝛼 − 1)

Γ(𝛼 + 1)Γ(2𝛼 + 1)Γ(4𝛼 − 1)
𝑥4𝛼−2 + ⋯ 

 

Table 3: Solution of Example 3  

 

𝒙 𝜶 = 𝟏. 𝟓 𝜶 = 𝟏. 𝟕𝟓 𝜶 = 𝟏. 𝟗𝟓 𝜶 = 𝟐 

0.1 1.030605 1.012547 1.006319 1.005329 

0.2 1.096489 1.045703 1.025998 1.022611 

0.3 1.193160 1.099420 1.060707 1.053754 

0.4 1.319540 1.174820 1.112238 1.100662 

0.5 1.474069 1.273234 1.182449 1.165276 

0.6 1.653487 1.395788 1.273231 1.249572 

0.7 1.851824 1.542923 1.386405 1.355510 

0.8 2.059272 1.713739 1.523488 1.484876 

0.9 2.260871 1.905098 1.685303 1.638985 

1 2.434909 2.110408 1.871333 1.818163 

 

 

V. CONCLUSION 

The main purpose of this paper is to find the solution of nonlinear fractional differential equation. The Adomian 

decomposition method is a powerful device for solving many functional equations. Our goal is to evaluate the nonlinear term in the 

fractional derivative using Adomian polynomials. In this paper, the Mahgoub Adomian decomposition method is proposed. 

Illustrative examples have been demonstrated the applicability of the presented new method. 
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