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1. Introduction

For the first time , N.Levine [8] has introduced the notion g-closed sets and g-open sets in topology. In
1993, N.Palaniappan [11] has defined and studied the notions of rg-closed
sets , rg-continuity and rg-irresoluteness in topological spaces.In 1995, 1997 , 2009, 2011, resp., Dontchev
[6] , Arokiranietal[4], Al-Omari etal [1 ], S.Bhattacharya [5] and S.l.Mahmood [9 ] have defined
and studied the concepts of gsp-closed sets , rg-open functions ,gpr-closed sets , gb-closed sets ,gr-closed
sets and gr-continuity and gr-irresoluteness in toplogical spaces.In this paper , we define and study the
concept of weakly generalized regular (brifly.wgr-) continuous functions, contra wgr-continuous functions ,
strongly wgr-continuous functions, spwgr-continuous functions and wgr-irresolute functionsand wgr-
connected spaces.

2. Preliminaries

Throughout this paper ( X, ) and (Y, o) (or simply X and Y ) denote topological spaces on which no
separation axioms are assumed unless explicitly stated . If A be a subset of X, the Closure of A and Interior

of A denoted by CI( A) and Int(A )respectivly.
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We, recall the following definitions and results hich are useful in the sequel.
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2 Preliminaries

Definition 2.1: The subset of A of X is said to be.
(i) semi-pre open[2]set , if A= CI(Int(CI(A)))
(ii) regular open set [ 11], if A =Int CI(A).
(iii)regular closed set [11 ], if A = CI Int(A).
(iv)b-open [3] if A < Clint(A) U IntCI(A).

The complement of a semipre-open (resp. b-open) set of a space X is called semipreclosed (resp. b-closed)
in X.

Definition 2.2[2]: The intersection of all semipre-closed sets of X containing subset A is called the

semipre-closure of A and is denoted by spCI(A).

Definition 2.3[ 11]: The intersection of all regular closed sets containing set A is called the regular
closure of A and is denoted by rCI(A).

Definition 2.4[ 3]: The intersection of all b-closed sets containing set A is called the b- closure of A and is
denoted by bCI(A).

Similarly, spint(A) ,pInt(A), rint(A) ,bInt(A),sInt(A) can be defined.

Definition 2.5[ 7]: A function f:X—Y is called contra-continuous if f(U) is closed in X for each open set
uiny.

Definition 2. 7: A subset A of a space ( X, t ) is called:
(1) generalized closed ( briefly, g- closed ) [ 8 ] set if CI(A)cU whenever AcU and
Uisopensetin X
(i)  generalized regular -closed ( briefly, gr- closed ) [ 5] set if rCI(A) cU whenever
AcU and U is semi-open setin X

(iii)  regular generalized ( briefly, rg- closed ) [ 11 ] set if CI(A)cU whenever AcU and U is r-open

setin X

(iv) generalized semi-preclosed ( briefly, gsp- closed ) [6] set if spCI(A)cU whenever AcU and U is

open in X
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(v)  generalized b-closed (brifly, gb-closed) [1] if bCI(A) =U whenever A — U and U is open in X

The complement of a g-closed ( resp, gr-closed, rg-closed ,gh-closed ) set in X is called g-open (
resp. gr-open, rg- open, gb-open) setin X.

3.Properties of continuous functions
We, recall the following

Definition 3.1[10]: A subset A of space X is called weakly generaralized regular closed (brifly,wgr-closed)
set if rCI(A)<U whenever ASU and U is semipreopen in X

The complement of a wgr-closed set of X is called wgr-open set in X. The family of all wgr-open
(resp,wgr-closed) sets a space X is denoted by WGRO(X) (resp, WGRF(X))

Clearly, every regular closed set is wgr-closed set, every gr-closed set is wgr-closed set

Definition 3.2: A function f:X—Y is called wgr-continuous if f* (V) is wgr -closed in X for every closed
subset V of Y

Clearly, every gr-continuous functions is wgr- continuous.

Theorem 3.3: Let f:X—Y be a function. Then the following are equivalent.
(i) fis wgr-continuous

(i) The inverse image of each open set Y is wgr-open in X

(iii) The inverse image of each closed set in Y is wgr-closed in X

Proof: (i)=(ii): Let G be open in Y. Then Y-G is closed in Y. By (i) f1(Y-G) wgr-closed in X. But f(Y-
G) = X-- f1(G) which is wgr-closed in X. Therefore f1(G) is wgr-open in X.

(il)=(iii) and
(iii)==(i) follows easily.
We, recall the following

Definition 3.4 [10]: The intersection of all wgr-closed set containing set A is called the wgr-closure of A
and is denoted wgrCI(A)

Lemma 3.5: Let xeX, then xe wgr-CI(A) if and only if VA= ¢ for every wgr-open set V containing X

Theorem 3.6: If a function f:X—Y is wgr-continuous then f(wgr-CI(A)) <CI(f(A)) for every subset A of
X.

Proof: Let f:X—Y be wgr-continuous. Let A=X. Then CI(f(A)) is closed in Y. Since f is wgr-continuous,
f1(CI(A)) is wgr-closed in X.Suppose ye f(x), xewgr-CI(A) Let G be an open set containing y = f(x). Since
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f is wgr-continuous. by Theorem 3.3, f1(G) is wgr-open containing x so that f1(G) NnA= ¢ by Lemma 3.5,.
Therefore f(F1(G) NA)# ¢ which implies f( f1(G) nf(A))# &.Since f( f1(G) S G, Gnf(A)# ¢.This
proves that yeCI(f(A)) that implies f(wgr-CI(A)) SCI(f(A)).

Lemma 3.7: A subset A of space X is called wgr-open set if U Srint(A) whenever USA and U is semipre-
closed setin X

We, recall the following

Definition 3.8[10] : The union of all wgr-open sets which contained in A is called the wgr-interior of A and
is denoted by wgriInt(A)

Theorem 3.9: Let X be a space in which every singleton set is rg-closed. Then f : X—Y is wgr-continuous
if and only if xerInt(f(V)) for every open subset V of Y containing f(x)

Proof: Suppose f:X—Y is wgr-continuous. Fix xeX and an open set V in Y such that f(x)eV. Then f1(V) is
wgr-open. Since xe f1(V) and since {x} is rg-closed, xerInt(f1(V) ) by lemma 3.7

Conversely, assume that xe rint(f1(V) ) for every open subset V of Y containing f(x). Let V be an open set
in Y. Suppose FE f1(V) and F is rg-closed. Let xF. Then f(x)€V so that xerint(f1(V) ) that implies
FErint(f1(V)). Therefore by lemma 3.8. (V) is wgr-open. This proves that f is wgr-continuous.

Theore 3.10: Let £:X—Y be wgr-continuous and g: Y—Z be continuous, then gof: X —Z be wgr-
continuous.

Proof: Let V be any open subset of Z. Then g*(V) is open in Y. Since g is continuous function. Again, fis
wgr- continuous and g (V) is open set in Y then f1( g*(V)) = (gof) (V) is wgr-open in X. This shows that
gof is wgr-continuous.

We, define the following

Definition 3.11: A function f:X—Y is called contra wgr-continuous if (V) is wgr-closed in X for each
opensetVin Y

Definition 3.12: A space X is called wgr-Tu if every wgr-closed set is regular -closed.

Theorem 3.13: Let f : X—Y be wgr-continuous and g : Y—Z be contra-continuous, then gof: X —Z be
contra Wgr-continuous.

Proof: Obvious.
We, define the following

Definition 3.14: A function f : X—Y is called strongly wgr-continuous if the inverse image of each wgr-
open set of Y is open in X.

Definition 3.15: A set UcX is said to be a wgr-neighbourhood of a point x€X if and only if there exists a
wgr-open set A in X such that xeAcU

Theorem 3.16: The following statement are equivalent for a function f: X—Y :
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(i) f is strongly wgr-continuous

(ii) For each point x of X and each wgr-neighborhood V of f(x),there exist a open-neighborhood Uof x such
that f(U) &V

(iii) For each x in X and each VEWGRO(f(x)), there exists Uz such that f(U) SV

Proof: (i)==(ii): Assume xeX and V is wgr-open set in Y containing f(x). Since , f is strongly wgr-
continuous and let W=f"(V) be a open set in X containing x and hence f(W)= f(f(V))cV.

(i)=(iii): Assume that VY is a wgr-open set containing f(x), Then by (ii) there exists a open set U such
that xeUc f1(V). Therefore, xe f1(V) = CI(f1(V)). This shows that  CI(f(V)) is a open-neighborhood
of x.

(iii)=>(i): Let V be a wgr-open set in Y, then CI(f(V)) is a open neighborhood of each x& (V). Thus, for
each x is a interior point of CI(f(V)) which implies that (V) cU. Therefore, f1(V) is a open set in X and
hence f is a strongly wgr-continuous function.

We, define the following.

Definition 3.17 : A function f : X—Y is called spwgr-continuous if the inverse image of each semipreopen
set of Y is wgr-open in X.

Clearly, every spwgr-continuous function is wgr-continuous function.

Theorem 3.18. Let f : X—Y be spwgr-continuous function and g :Y—Z be semipreirresolute then gof
:X—Z is spwgr-continuous function.

Proof : Obvious.

Theorem 3.19 : Let f : X—Y be strongly-wgr-continuous function and g :Y —Z be spwgr-continuous then
gof :X—Z is strongly semiprecontinuous function.

Proof : Obvious.

Definition 3.20: A function f:X—Y is called wgr-irresolute if f “}(V) is wgr-closed in X for every wgr-
closed subset V of Y

Theorem 3.21: Every wgr-irresolute function is wgr-continuous

Proof: Suppose f:X—Y iswgr-irresolute. Let V be any closed subset of Y. Then V is semi-pre-closed in
Y. Then using lemma ( Every semi-pre closed set is wgr-closed). V is wgr-closed in Y. Since f is wgr-
irresolute, f (V) is wgr-closed in X. This proves the theorem.

We, recall the following

Definition 3.22: A function f:X—Y is called r-closed if be image of each closed set of X is regular closed
inY
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Theorem 3.23: Let f:X—Y be rg-irresolute and r-closed. Then f maps a wgr-closed set in X into a wgr-
closed setinY

Proof: Let A be wgr-closed in X. let f(A) € U, where U is rg-open in Y. Then A =f 1 (U)
Since f is rg-irresolute, f - (U) is rg-open in X. Since A is wgr-closed,

rCI(A) € f 1 (U) that implies f(rCI(A) € U.

Since fis r- closed f(rCI(A) is r-closed that implies rCI( f (A)) < rCI(f(rCI(A))=f(rCI(A) S U.
By using Definition 2.2 .f(A) is wgr-closed in Y

Theorem 3.24. Let f:X—Y and g : Y—Z be any two function. Let h=g.f Then

(i) his wgr-continuous if f is wgr-irresolute and g is wgr- continuous

(i1) h is wgr-irresolute if both f abd g are both wgr-irresolute and

(iii) h is wgr-continuous if g is continuous and f is wgr-continuous

Proof: Let V be closed in Z. Suppose f is wgr-irresolute and g is wgr- continuous. Since g is wgr-
continuous ,g (V) is wgr-closed in Y. Since f is wgr-irresolute, using definition 3.23,

f1 (g (V)) is wgr-closed in X. This proves (i). To prove (ii), let f and g be both wgr-irresolute. Then g -
L(v) is wgr-closed in y. Since f is wgr-irresolute, using definition 3.23

We, define the following.
Definition 3.27 : A Topological space X is said to be wgr-connected if X cannot be
written as the disjoint union of to non empty wgr-open sets in X.

Theorem 3.25: Let f:X—Y be a function
(i) If Xis wgr-connected and if f is wgr-continuous, surjective, then Y is connected
(it) If X is wgr-connected and if fis wgr-irresolute ,surjective, then Y is wgr-connected.

Proof: Let X be wgr-connected and f be wgr-continuous, surjective. Suppose Y is disconnected. Then Y =

AUB, where A and B are disjiont non empty open subset of Y. Since f is wgr-continuous surjective by
using Theorem 3.3, X=f(A)uf }(B) where f 1(A)and f}(B) are disjoint non empty wgr-open subsets

of X. This contradicts the fact that X is wgr-connected. Therefore Y is connected. This proves (i)

Let X be wgr-connected and f be wgr-irresolute surjective. Suppose Y is not wgr-connected. Then Y =

AUB where A and B are disjoint non empty wgr-open subsets of Y. Since f is wgr-irresolute surjective by
Theorem X=f Y(A)uf }(B) where f "}(A) and f "}(B) are disjoint non empty wgr-open subsets of X. This

implies X is not wgr-connected a contradiction. Therefore Y is wgr-connected. This prove (ii)
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f1 (g (V) iswgr-closed in X. This proves (ii). Finally to prove (iii), let g be continuous and f be wgr-
continuous. Then g "*(V) is closed in Y. Since f is wgr-continuous, using definition 3. (g (V)) is
wagr-closed in X. This proves (iii).
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