
© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807473 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 19

DYNAMIC REQUEST REDIRECTION FOR

MINING SYSTEM SERVICES UNDER

HETEROGENEOUS DISTRIBUTED SYSTEM

Dhanashree R. Kolhe, Dr.Varsha Namdeo

Department of Computer Science & Engineering

RKDF Institute of Science & Technology, Bhopal

Abstract: Algorithms are used on very big data sets with high dimensionality. Therefore fast processing can be applied for mining

using association rules. The process of association rule mining consists of identifying frequent item sets and generating rules from

the frequent item data sets. Finding frequent item sets is more complex in terms of CPU power consumption and computing

resources utilization. Thus majority of parallel apriori algorithms focus on parallelizing the process of discovering frequent item set.

The computation of frequent item sets mainly consists of creating the candidates and counting them. In parallel frequent item sets

mining algorithms addresses the issue of distributing the candidates among processors such that their creation and counting is

effectively parallelized. This paper presents comparative study of these algorithms.

Index Terms: Parallel data mining, frequent item sets, association rules, apriori algorithm.

I. INTRODUCTION

Accumulation of plentiful data from different sources of the society but a little knowledge situation has lead to knowledge

discovery from databases which is also called data mining. Data mining techniques use the existing data and retrieve the helpful

information from it which is not directly visible in the original data. As data mining algorithms deal with large amount of data, the

primary concerns are how to store the data in the main memory at run time and how to increase the run time performance.

Sequential algorithms cannot supply scalability, in terms of the data dimension, size, or runtime performance, for such large

amount of databases. Because the data sizes are increasing to a large quantity, high-performance parallel and distributed

computing is used to get the advantage of more than one processor to handle these huge quantities of data. Data mining deals with

huge volumes of data to extract the useful knowledge. Association Rule Mining (ARM) or frequent item set mining is an

important functionality of data mining. The apriori algorithm is one of the best algorithms for discover frequent item sets from a

transaction database. As data mining mainly deals with large volumes of data, the main issue is how to improve the performance

of the algorithm. One way of improving the performance of apriori is parallelizing the process of generates frequent item sets. The

rest of the paper is organized as follows. In Section 2 related work is overviewed. In Section 3 concepts of association rule mining

are discussed and apriori algorithm is described. In Section 4 comparative analysis of parallel apriori algorithms is given. In

Section 5 conclusion is given.

II. RELATED WORK

 Many parallel ARM algorithms have been given which represent transactions using either horizontal data format or

vertical data format [4, 7]. In horizontal data format, data is presented as transaction ID versus items sold in each transaction

whereas in vertical data format, data is presented as each item versus transaction ids in which the item is sold. There are several

parallel association rule mining algorithms based on data set partitioning like Count Distribution, Data Distribution, Candidate

Distribution, Common Candidate Partition, and Parallel Partition [1, 5, 9, and 10].

III. ASSOCIATION RULE MINING

3.1 Basic Concept:

The basic concept of association rule mining is arises from the market basket analysis. Let D be the transaction database which

composed of the transaction records {T1, T2... Tn} of the customers. Each transaction T consists of the items purchased by the

customers in one visit of the market. The items are the subset of the set of whole items I {I1, I2,..,Im} in the market that are

considered for analysis. An item set consists of some combination of items which occur together or a single item from I. In

Association rule mining X->Y, represents the dependency relationship between two different item sets X and Y in DB. The

dependency is at any time X is occurring in any transaction, there is a probability that Y may also occur in same transaction. This

skill is based on two interesting measures.

Support: this represents the percentage of transactions in D that contain X U Y and it is given by

Support(X->7) = P (X U Y).

Confidence: It gives the percentage of transactions in D containing X that also contain Y and it is given as confidence(X->Y) = (/).

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807473 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 20

3.2 Apriori Algorithm

Apriori algorithm is the most established association rule mining algorithm. It is based on the apriori principle that all the

nonempty (at least one) subsets of a frequent item set must be frequent. It is a two-step process.

Step 1: The prune step

It scans the entire database to perceive the count of each candidate in Ck where Ck represents candidate k- item set. The count of

each item set in Ck is match up with a predefined minimum support count to find whether that item set can be arranged in

frequent k-itemsetLk.

Step 2: The join step

Lk is natural joined with itself to generate the next candidate k+1-itemset Ck+1. The main step here is the prune step which

requires scanning the whole 1database for finding the count of each itemset in whole candidate k-itemset. If the database is

enormous then it requires more time to find all the frequent item sets in the DB.

Figure 1: Example for Apriori Algorithm

IV. SYSTEM ARCHITECTURE

4.1 Single Core CPU Architecture:

 A single-core processor is a microprocessor with a single core on a chip, running a single thread at any one time [1].

Figure 2

4.2 Multicore CPU Architecture:

Multi core indicate two or more processors. But they differ from separate parallel processors as they are combined on the same

chip circuit. A multi core processor developed message passing or shared memory inter core communication methods for

multiprocessing.

Figure 3

4.3 Serial Threading approach:

A serial mining is defined to be a partially ordered set of events for consecutive and fixed-time intervals in a sequence. It mainly

involves mining by using single thread environment. In this proposed system we are using serial mining on apriori algorithms in

sequential fashion.

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807473 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 21

Figure 4

4.4 Multithreading approach:

A parallel mining is defined to be a partially ordered set of events for concurrent and fixed-time intervals parallelly. It mainly

involves mining by using multi-threading environment. In this proposed system we are using parallel mining on apriori

algorithms in parallel fashion.

Figure 5

V. PARALLEL APRIORI ALGORITHMS

5.1 Count Distribution Algorithm

Every processor generates the partial support of all candidate item sets from its local database partition in parallel. In the end of

each iteration the global supports are generated by exchanging the partial support counts among all the processors. All the

processors generate the entire candidate from Lk-1. Each processor thus independently computes the partial supports of

candidates from its local database partition. Then each processor exchanges its local counts of Ck with all the other processors to

generate the global Ck counts. Each processor then computes Lk from Ck. Once the global Lk has been determined, every

processor builds Ck+1 in parallel and repeats the process until all frequent item sets are found [11].

5.2 Data Distribution Algorithm

It developed the frequent 1-itemset by using count distribution algorithm. It then partitions the candidates into disjoint sets which

are assigned to number of different processors. Each processor calculates the support counts for the item sets in its local

candidates by scanning local partition and the remote partitions to generate the local frequent item sets in all repetition. At the end

of each iteration, processors exchange local frequent item sets with the other processors so that each and every processor has the

complete Lk for generating Ck+1.

5.3 Candidate Distribution Algorithm

In the initial passes it uses either Count Distribution or Data Distribution algorithm. Then in some pass I which is heuristically

determined, this algorithm break down the frequent item sets Lk-1 among the processors in such a way that each processor can

generate exclusive candidate sets independent of each processor can calculate the counts of the candidate set independent.

5.4 Common Candidate Partitioned Algorithm (CCPD)

It is similar as the count distribution algorithm. It uses shared memory architecture. Each processor generates the candidate item

sets in parallel and stocks them in a hash structure which is shared among all the processors. Each processor checks its local

partition to calculate the support counts of the candidates and atomically updates the counts of the candidates in the common hash

structure.

5.5 Fork-Join Parallelism

Initially programs start as a single process: master thread. We can make some part of the program to work in parallel by

constructing child threads. Master thread executes in serial mode until the parallel region construct is encountered. Master threads

construct a team of parallel child threads (fork) that simultaneously execute statements in the parallel region. The work sharing

construct divides the work between all the threads. After executing the statements in the parallel region, team threads synchronize

and enumerate but master continues.

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807473 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 22

5.6 High Performance Computing (HPC)

“Multicore System of HPC framework” technique improves the performance of data mining algorithm which uses sequential

processing they are modified using the theory of parallel processing. Still there is a chance of performance improvement of

Apriori algorithm by using Parallel Processing. HPC systems, also popularly referred as Supercomputers, generally capitalize on

aggregating computing power in a way that delivers much higher performance than one could get out of a typical single desktop

computer or workstation in order to solve large problems in engineering, or business. They are used for a wide range of

computationally in depth tasks in various fields, comprise quantum mechanics, weather forecasting, climate research, oil and gas

exploration, molecular modeling and or physical simulations. HPC systems have been shifting from expensive massively parallel

architectures to clusters of commodity computers to take advantage of cost and performance benefits.

5.7 Multi core

Multi core assign two or more processors. But they differ from independent parallel processors as they are integrated on the

similar chip circuit [7,8]. A multi core processor implement message passing or shared memory inter core communication

methods in multiprocessing. If the number of threads are less than or equal to the number of cores, separate core is provided to

each thread and threads run independently on multiple cores. (Figure 1) If the numbers of threads are more than the number of

cores, the cores are distributed among the threads. Any application that can be threaded can be mapped effortlessly to multi-core,

but the improvement in performance gained by the usage of multi core processors depends on the portion of the program that can

be parallelized. [Amdahl's law][10]

Figure 6

VI. EXPERIMENTAL RESULT

6.1 Database

Table 6.1: Databases table

Table 6.1 consists of database ID, Transactions of users, and Items.

6.2 Result Analysis

Table 6.2

Minimum support=25%

ID Transaction Item

DB_1 20 10

DB_2 25 20

DB_3 100 20

DB_4 200 20

DATABASE_ID Serial Mining Parallel Mining Frequent Item set

DB_1 53 milliseconds 15 milliseconds 191

DB_2 635 milliseconds 103 milliseconds 2003

DB_3 65873 milliseconds 846 milliseconds 21151

DB_4 107146 milliseconds 1363 milliseconds 25042

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807473 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 23

Figure 7

 Table 6.2 consists of database id, timing required for serial mining, timing required for parallel mining and frequent item

set. Each database has transactions and items which is mentioned in table 6.1.

VII. CONCLUSION

The performance of the parallel apriori algorithms depends on the processing time and the data communication cost. The data

communication cost can be reduced by using client- server architecture like Parallel Partitioning Algorithm and exchanging only

the counts as in Count Distribution Algorithm. The processing time depends on the database layout, number of times the database

is scanned and the size of the candidates generated. Vertical database layout speeds up the searching process as demonstrated in

the Apriori Algorithm and reduces the database scanning time. Thus, a parallel apriori algorithm using client-server architecture

with only counts exchanged and using vertical database layout can achieve balanced trade-off between the processing time and

the data communication cost and using multicore processing power we can easily reduce overhead of mining process.

REFERENCES

1. KhadidjaBelbachir, HafidaBelbachir, "The Parallelization of Algorithm Based on Partition Principle for Association Rules

Discovery", In Proceedings of International Conference on Multimedia Computing and Systems (ICMCS), IEEE, May 2012.

2. RuowuZhong, Huiping Wang, "Research of Commonly Used Association Rules Mining Algorithm in Data Mining", In

Proceedings of International Conference on Internet Computing and Information Services (ICICIS), IEEE, September 2011.

3. AzizGinwala, Priyankakonde, PriyankaBhalekar, MayuriJambhulkar ,Prof.SunilYadav “Performance Enhancement Scheme

for Multithreading Application Using Chunking Mechanism”.

4. V.Umarani, Dr.M.Punithavalli, "A Study on Effective Mining of Association Rules From Huge Databases", International

Journal of Computer Science and Research (IJCR), Vol. 1 Issue 1, 2010.

5. Xindong Wu , Vipin Kumar, J. Ross Quinlan, JoydeepGhosh, Qiang Yang ,Hiroshi Motoda, "Top 10 Algorithms in Data

Mining", Knowledge and Information Systems, Volume 14, Issue 1, pp 1-37, Springer, January 2008.

6. Mohammed J. Zaki, SrinivasanParthasarathy, MitsunoriOgihara, Wei Li, "Parallel Data Mining for Association Rules on

Shared-Memory Systems", Data Mining and Knowledge Discovery, Springer, 2001.

7. Eui-Hong (Sam) Han, George Karypis, Vipin Kumar, "Scalable Parallel Data Mining for Association Rules", IEEE

Transactions on Knowledge and Data Engineering, Volume: 12, Issue: 3, May/June 2000.

8. Mohammed J. Zaki, "Parallel and Distributed Association Mining: A Survey", IEEE Concurrency, Vol 7, Issue 4, pp 14-25,

October 1999.

9. Mohammed J. Zaki, SrinivasanParthasarathy, MitsunoriOgihara, Wei Li, "Parallel Algorithms for Discovery of Association

Rules", Data Mining and Knowledge Discovery, Vol 1, Issue 4, pp 343-373, Springer, December 1997.

10. Mohammed J. Zaki, SrinivasanParthasarathy, MitsunoriOgihara, Wei Li, "A Localized Algorithm for Parallel Association

Mining", Proceedings of the ninth annual ACM symposium on Parallel algorithms and architectures, ACM 1997.

11. RakeshAgrawal, John C. Shafer, "Parallel Mining of Association Rules", IEEE Transactions on Knowledge and Data

Engineering, December 1996.

53 635

65873

107146

15 103 846 1363

0

20000

40000

60000

80000

100000

120000

DB_1 DB_2 DB_3 DB_4

Serial Parallel

http://www.jetir.org/

