
© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807509 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 302

Robot Automation Framework for ETME Card Bring

Up.

Chandana H P, Mahalinga V Mandi

PG Scholar, Department of E&C, DR. AIT, Bangalore, Karnataka, India

Professor, Department of E&C, Dr.AIT, Bangalore, Karnataka, India

Abstract—
 This paper presents a Robot based Automation

Framework for ETME card bring up (Microcontroller

Exchange Terminal for Packet Transport over

Ethernet). By using Robot, signal generation function

is invoked. Its arguments are based on the test input.

Test input data is read from user test case input text

file corresponding to the test case and corresponding

signals are created in a similar reference text file

offline. When test case is executed, Robot will

instruct the signal generator to use which file based

on the test case id, the signal generator will read the

intermediate reference file and form a UDP(User

Datagram Protocol) packet and send to the

SUT(System Under Test) configured. SGF(Signal

Generating Function) will wait for the response from

the SUT and dump the output in a text file

corresponding to respective test case. Robot will

perform validation of the expected output from the

reference output file and the dumped output and

generate the report.

Index Terms — Software Testing; Robot

Framework; Automated Testing; System Under

Test

I. INTRODUCTION

Robot Framework is one of the open source software

developed by Nokia Siemens. It is based on the

Python language keyword driven automated test

framework. HTML or TSV file organizes test cases,

while Setting, Variable, Test Case and Keyword are

combined to form data file. Automated testing is

introduced by framework, which reduces software

regression testing overhead, and also is easy to use. It

also provides Python or Java test library and other

functions.

II. LITRATURE SURVEY

Robot Framework is one of the tool developed by

Nokia Siemens communication technology limited

company. But now it’s open source software and

based on the Python language keyword driven

automated test framework. The Framework

introduces the automated testing, not only can it

improve the testing efficiency, reduce software

regression testing overhead, but also is easy to use. At

last, it provides Python test library and other

functions. Software testing refers to the use of

manual or automatic means to run a test system or

process. Its purpose is to test whether it meets the

specified requirements or find out the difference

between the prediction results and the actual results.

Traditional manual testing is a non-technical,

inefficient, repetitive, and time-consuming labor

work. Automation test uses strategies, tools and

output, reducing manual intervention to

non-technical (repetitive), so as to achieve unmanned

guard completion test, and automatically generate

test report, analysis of test results of a series of

activities. Obviously, the automated test technology

can improve the software testing efficiency and

reduce the testing personnel repetitive work[1].

System-level test automation has gone

through multiple generations, where each new

generation has raised the level of abstraction used in

the test design. The state of the art test automation,

the keyword-driven testing process, abstracts the

implementation of tests behind high-level actions, i.e.

keywords. In GUI testing, keywords typically depict

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807509 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 303

basic user actions, such as pressing keys, typing or

reading text. The tests are built as sequences of

keywords, and keywords are automatically translated

into concrete low-level scripts. The abstraction can

be increased further by dividing keywords into

different hierarchical levels. For instance, low-level

concrete scripts may be abstracted under lower-level

keywords, and lower-level keywords under

higher-level keywords. The two main benefits of

keyword abstraction are the reduced amount of

maintenance work related to tests and the fact that the

tests are easier to build and understand. When a

detailed implementation of an action is in one script,

the maintenance work has to be performed only to

that script. Understanding and creating tests do not

require programming expertise since keywords are

easy to understand, because they are not low-level

system commands, but rather general commands

familiar from everyday usage. A keyword script also

is much shorter than a more traditional test script[2].

Model-based testing (MBT) is a way of automating

test design. It is defined as an approach that uses a

model of the SUT in testing tasks. Model-based

testing can be seen as a specification-based test

generation approach in which the model is the

specification. The term model-based testing is a

generic term used for several test generation

techniques. Utting and Legeard present four test

generation approaches in model-based testing:

 Generation of test input data from a domain

model.

 Generation of test cases from an environment

model.

 Generation of test cases with oracles from a

behavior model.

 Generation of test scripts from abstract tests.

The first three approaches are all based on test

generation from a model. The domain model

describes the domains of input data that can be given

to the system and the environment model the

expected environment, such as operation frequencies,

of the SUT. Both models can be used to generate

input for the SUT, but either does not include the

expected output of the system, thus requiring manual

work for verification. The third model, behavioral

model, includes oracle information about the

expected behavior of the system and can thus be used

to detect any irregularities in the output of the SUT

automatically. The forth approach does not include

models as such, but rather test cases that are

described in a high level of abstraction, without the

low-level implementation details. Basically a script

defined with high-level keywords could be

categorized as the fourth approach. This paper uses

the term model-based testing in the third meaning.

The test execution in MBT can be divided into online

and off-line testing. In online testing the tests are

generated at the same time as they are executed with

an adapter tool. Online testing is good for testing a

nondeterministic SUT and for long-running test

sessions. Offline testing refers to an approach where

the test execution and generation are carried out

separately[1].

Fig.1 shows Robot Framework architecture. Robot

Framework’s application and technique is

independent of each other, so it is called as versatile.

At the same time, it is a set of automated testing tool

as shown in Fig.1.

Figure 1: Robot Framework architecture.

 Test Data:

It is easy to edit, which is in the form of table.

Robot Framework uses test data to run test cases,

which generates logs and reports. For the different

type measure systems, the core of the framework is

unpredictable and is interactive with the measure

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807509 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 304

systems through the Test Libraries. Application

program interface can be directly used by test library

or it can use lower levels of testing tools as driving.

 Robot Framework:

Python or Jython is used to run Robot Framework,

because Python language is used as source code for

Robot Framework. To start framework, test data file,

and to execute test cases, we can use commands.

 Test Libraries:

R&D personnel according to the test requirements

as well as Built in Library Robot framework are

composed to form Test Libraries.

 System under Test:

Product which is to be tested[1].

IV. PROPOSED SYSTEM

Figure 2: Software Architecture.

ETME Application Software keeps running on

Octeon (Multi Controller equipment). Octeon has

12-centers. One center is Management center and

other 11 centers are Fast Path (SE-S) centers.

Fig.2 shows a software architecture of the

proposed system. The Management center keeps

running on Linux working framework and handles

O&M usefulness, ETPSIG messages from DX,

manages fast path cores and switchover activities.

Fast path cores run in SE-S environment.

There is a single task running on these cores and the

core handles U-plane traffic forwarding.

The cores have been divided into UL and DL

cores. This gives a better usage of Instruction/Data

cache, compared to when both UL and DL

functionality is run on a single core. Octeon platform

is configured such that packet for the any Call from a

BCF will be ATOMIC tagged i.e., only one packet

from a BCF will be processed at a time by any of the

core. UL cores handle the user plane traffic coming

from BCF and DL cores handle the user plane traffic

from ETMA and PCUM.

The Application Software on the ETME

implements the control, management and user plane

requirements for providing CS and PS services. The

following requirements are handled by ETME

software.

• Resource allocation/deallocation for CS

and PS calls

• Multiplexing/Demultiplexing of DL/UL

CS traffic respectively.

• Routing of UL and DL U-plane traffic to

destination TLA of ETMA for CS Traffic and

destination TLA of PCUM for PS Traffic.

• Maintains DB to replicate on spare unit in

case of controlled switchover.

• Spare unit warming up: Incase of

controlled switchover, telecom data for ongoing CS

calls will be warmed up on spare unit to support

ongoing CS calls.

V. METHODOLOGY

Fig.3 shows the block diagram of robot framework.

Robot framework is mainly used for triggering test

case, generation of intermediate input signal,

validation and report generation. By using Robot,

trying to control the invocation of signal generation

function and data generation function. Its arguments

are based on the test input. User has to create test

input data for each test case and the expected output

in a pre-defined template. i.e currently it is in sack

structure filled manually (future action is integrating

sack template generator so that it would be user

friendly).

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807509 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 305

Figure 3: Block diagram of Robot Framework.

Figure 4: Block diagram of Signal Generation

Function.

Fig. 4 shows the block diagram of signal

generation block. Test input data is read from user

test case input text file corresponding to the test case

and corresponding signals are created in a similar

reference text file offline. When test case is executed,

Robot will instruct the signal generator to use which

file based on the test case id, the signal/data generator

will read the intermediate reference file and form a

UDP packet and send to the SUT configured. SGF

will wait for the response from the SUT and dump the

output in a text file corresponding to that test case.

Robot will perform validation of the expected output

from the Reference output file and the dumped output

and generate the report. If the response is success,

then based on the test case input, Robot will invoke

the data generation function for sending the user

plane data to SUT.

First install the robot framework by following

the steps in confluence page. Create a folder ETP_TC

and copy 'robot_fwk' to ETP_TC in windows from

the SVN link. A python script -

etm_ssi_framework.py with keywords is written in

the folder 'robot_modules'. A robot script -

'Login_script_vetm_ssi.txt' is written in folder

'robot_tc'. Test cases are executed using the keywords

in the above mentioned script. Run below mentioned

command on command prompt set

PYTHONPATH=%PYTHONPATH%;D:\userdata\c

hhp\Desktop\RF_files\ETP_TC\IPV6_ROBOT_FW

K;D:\userdata\chhp\Desktop\RF_files\ETP_TC\IPV

6_ROBOT_FWK\TestCases\robot_modules;D:\user

data\chhp\Desktop\RF_files\ETP_TC\IPV6_ROBO

T_FWK\comm\communication\connections;in

windows to set python path for Robot :

Before executing the testcases generate DX_SIM by

below command

make clean; make

tc<ID>_in.txt is generated by tc<ID>_msg.txt by

below command.

pybot -P `pwd` --include robo_test_gen_input

./robot_tc/etme_card_bring_up.txt

If range of tc<ID>_in.txt’s need to be generated

below is the command.

pybot -P `pwd` --include robo_test_gen_input_all

./robot_tc/etme_card_bring_up.txt

Robot invokes DX Simulator by sending a

test case ID. According to the test case ID sent, the

arguments for DX_SIM are read from an input file in

the same folder as DX_SIM. For test case ID: 1, the

file is tc1.txt. The file contains the message IDs to be

called and the parameters to be sent along for the

messages to vETME. When acknowledgement for

particular message is received, it is stored in the same

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807509 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 306

folder in a tc1_out.txt file. Robot validates the result

with the reference file created by the user.

tc1_expected.txt We have written User writes data

into the file tc<ID>_msg.txt where ID is the testcase

ID and this file contains message parameters to be

sent to ETM units for signalling/data. From this file

Robot Framework fetches parameter values and write

it into a format understood by the DX_SIM into file

tc<ID>_in.txt. When DX Sim is executed it reads

message parameters from tc<ID>_in.txt and sends to

ETM unit. DX_SIM gets response from ETM unit

and saves in the file tc<ID>_out.txt. Robot compares

the result received with the reference result saved by

user and test cases passes/fails accordingly.

To run all the testcase in a regression suite by

robot framework etme_card_bring_up.txt is written.

This will have all testcases list with tag mentioned.

Here I have used card_bring_up_etme tag. Below

commands are run from the command prompt

set

PYTHONPATH=%PYTHONPATH%;D:\userdata\c

hhp\Desktop\RF_files\ETP_TC\IPV6_ROBOT_FW

K;D:\userdata\chhp\Desktop\RF_files\ETP_TC\IPV

6_ROBOT_FWK\TestCases\robot_modules;D:\user

data\chhp\Desktop\RF_files\ETP_TC\IPV6_ROBO

T_FWK\comm\communication\connections;

pybot -P `pwd` --include card_bring_up_etme

./robot_tc/etme_card_bring_up.txt

VI. RESULT AND DISCUSSION

By executing the below commands, the robot

framework will look for all the testcases with the tag

“card_ bring_up_etme” and executes them in suite.

These testcases is to bring up etme card. Below are

the results. Fig. 5 shows 12 testcases status to written

to bring up the etme card and to create bcf from bcf

configuration testcase. Fig. 6 shows the time elapsed

to run all the 12 testcases. This will be generated as

html report.

set

PYTHONPATH=%PYTHONPATH%;D:\userdata\c

hhp\Desktop\RF_files\ETP_TC\IPV6_ROBOT_FW

K;D:\userdata\chhp\Desktop\RF_files\ETP_TC\IPV

6_ROBOT_FWK\TestCases\robot_modules;D:\user

data\chhp\Desktop\RF_files\ETP_TC\IPV6_ROBO

T_FWK\comm\communication\connections;

Figure 5: Output of running etme card bring up test

cases from robo.

Figure 6: Time taken to run etme card bring up

testcases from robo.

CONCLUSION

Since Robot Framework has rich libraries, it is easier

for users to extend based on its framework. Extended

Robot Framework is an external test library based on

Robot Framework and is a scalable keyword-driven

test automation framework that can be used to test

distributed complex applications. Manual testing is

laborious and time consuming. Automation

framework reduces manual effort and makes the

work faster and efficient. Added advantage of

automation framework is can reused. Hence reduces

time, cost and manual effort.

REFERENCES

[1] Liu Jian-Ping, Liu Juan-Juan, Wang Dong-Long,

“Application Analysis of Automated Testing

 Framework Based on Robot”, 2012

http://www.jetir.org/

© 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR1807509 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 307

[2] Tuomas Pajunen, Tommi Takala, and Mika

Katara, “Model-Based Testing with a General

Purpose Keyword-Driven Test Automation

Framework” 2011

[3] Wu JianJie, Chen ChuanBo, Xiao LaiYuan.

Software testing technology base. Huazhong

university of science and technology

press. 2008. pp.10-15.

[4] Author: Louise Tamres, Translator: Bao XiaoLu,

Wang XiaoJuan, Zhu GuoPing. Software Testing.

Posts & Telecom press. 2004. pp.20-

26.

[5] Deng Bo, Huang LiJuan, Cao QingChun, etc.

Software test automation. Mechanical industry press.

2003. pp.6-8.

[6] Cai JianPing. Software testing university

tutorials. Tsinghua university press. 2009. pp.42-46

[7] Nokia Siemens Networks. Robot Framework

User Guide. 2008-2009. pp.6-74.

[8]J. Wu, C. K. Tse, F. C. M. Lau, and I. W. H. Ho,

―Analysis of communication network performance

from a complex network perspective,‖ IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp.

3303–3316, 2013.

[9] L. C. Freeman, ―A set of measures of centrality

based on betweenness,‖ Sociometry, vol. 40, no. 1,

pp. 35–41, 1977.

[10] J. Wu, C. K. Tse, and F. C. M. Lau, ―Concept

of node usage probability from complex networks

and its applications to communication network

design,‖ IEEE Trans. Circuits Syst. I, Reg. Pap., vol.

62, no. 4, pp. 1195–1204, 2015.

[11]J. Liu, R. Love, K. Stewart and M.E. Buckley,

―Design and Analysis of LTE Physical Downlink

Control Channel‖, IEEE VTC-Spring 2009, pp.1-5,

Apr. 2009.

[12] 3GPP TR36.921, ―Evolved Universal

Terrestrial Radio Access (EUTRA);FDD Home

eNode B (HeNB) Radio Frequency (RF)

requirements analysis‖, V11.0.0.

[13] V. Garcia, Y. Zhou and J.L. Shi, ―Coordinated

Multipoint Transmission in Dense Cellular Networks

with User-Centric Adaptive Clustering‖, accepted by

IEEE Trans. Wireless Comm., Apr. 2014.

[12] 3GPP TR36.921, ―Evolved Universal

Terrestrial Radio Access (EUTRA);FDD Home

eNode B (HeNB) Radio Frequency (RF)

requirements analysis‖, V11.0.0.

[13] R. Kantola, J. Llorente Santos, and N. Beijar,

Policy-based communications for 5G mobile with

customer edge switching, Security

andCommunication Networks, 2015.

[14] Wu JianJie, Chen ChuanBo, Xiao LaiYuan.

Software testing technology base. Huazhong

university of science and technology press. 2008.

pp.10-15.

[15] Author: Louise Tamres, Translator: Bao

XiaoLu, Wang XiaoJuan, Zhu GuoPing. Software

Testing. Posts & Telecom press. 2004. pp.20- 26.

[16] Deng Bo, Huang LiJuan, Cao QingChun, etc.

Software test automation. Mechanical industry press.

2003. pp.6-8.

http://www.jetir.org/

