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ABSTRACT: Hilbert Transform faces several challenges in dealing with closely-spaced frequency components, short-time and 

weak disturbances, and interrelationships between two time-varying modes of nonlinear vibration due to its mixed mode problem 

associated with empirical mode decomposition (EMD). To address these challenges, analytical mode decomposition (AMD) 

based on Hilbert Transform is proposed and developed for an adaptive data analysis of both stationary and non-stationary 

responses. With a suite of predetermined bisecting frequencies, AMD can analytically extract the individual components of a 

structural response between any two bisecting frequencies and function like an adaptive bandpass filter that can deal with 

frequency-modulated responses with significant frequency overlapping. It is simple in concept, rigorous in mathematics, and 

reliable in signal processing.The Hilbert transform is a widely used transform in signal processing. In this thesis we explore its 

use for different applications: electrocardiography, modulation etc. The Hilbert- transform is a very popular method for spectral 

analysis for nonlinear and/or non-stationary processes. We examine its connection with the Hilbert transform and show 

limitations of the method. Lastly, the connection between the Hilbert transform and single-sideband modulation is investigated.  
 

Index Terms- AMD, adaptive, EMD, Hilbert Transform, modulation, spectral. 

 
I. INTRODUCTION 

The Hilbert transform is named after David Hilbert 

(1862-1943). Its first usedates back to 1905 in Hilbert's 

work concerning analytical functions in connection to the 

Riemann problem. In 1928 it was proved by Marcel Riesz 

(1886-1969) that the Hilbert transform is a bounded linear 

operator on Lp(R) for 1 < p <1.This result was generalized 

for the Hilbert transform in several dimensions (andsingular 

integral operators in general) by Antonin Sigmund (1900-

1992) and Alberto Calderon (1920-1998).Mainly, the 

importance of the transform is due to its property to extend 

real functions into analytic functions. This property 

certainly induces a vast numberof applications, especially in 

signal theory, and obviously the Hilbert transformis not 

merely of interest for mathematicians. 

It is well-known that modal analysis of apparently linear 

structures frequently generates inconsistent modal 

parameters and that transfer functions often lack the 

property of reciprocity. These inconsistencies are usually 

attributed to non-  linearities in the structure under test. 

However, methods for assessing the deviation of frequency 

response data from the linear ideal have eluded the 

practising test engineer. The fact that in modal analysis the 

theoretical complex frequency response functions are linear 

analytic functions means that a unique relationship exists 

between their real and imaginary parts. This relationship has 

been successfully used in many areas of signal processing 

and for any linear complex analytic function from which the 

real part of the function can be generated 

from its imaginary part (and vice versa) the relationship 

is known as the Hilbert transform.The Hilbert transform, an 

integral transform which is a relative of the Fourier 

transform,was described by Titchmarsh [l] in 1937, who 

presented formal proofs of the derivation of the Hilbert 

transform by this means and by consideration of a general 

analytic functionG(z), whose real and imaginary parts form 

a Hilbert transform pair. 

 

1.1 Frequency Domain. With the development of 

digital signal processing 

Techniques such as Fast Fourier Transform (FFT), 

modal tests and analysis become competitive in modal 

property characterization of structures (Alvin et al., 2003). 

In order to determine modal parameters, the frequency 

response function of a structure between its excitation and 

structural response is estimated from the available vibration 

measurements. 

 
Fig. 1. relationship between excitation and response 

 

In Figure 1, F(ω) and X(ω) represent the Fourier 

transforms of the measured excitation and the measured 

response, respectively; Z(ω) = F(ω) - M(ω) is the Fourier 

transform of the actual excitation and Y(ω) = X(ω) - N(ω) is 

the Fourier transform of the actual response; M(ω) and N(ω) 

represent the mechanical and measurement noises to the 

input and structural response, respectively; FRF(ω) is the 

frequency response function of the structural system. 

Mathematically, the response Y(ω) can be related to the 

excitation Z(ω) . 

According to Trendafilova (1998) and Monaco et al. 

(2000), frequency response functions can be used to 

quantify and localize minor damage. However, they face 

difficulties when the input excitation is unknown with 

ambient vibration of structures. In this case, Brincker et al. 
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(2000; 2001) developed a frequency domain decomposition 

method under two assumptions: (1) white noise input, and 

(2) lightly structural damping. Singular value decomposition 

(SVD) can then be applied to expand the power spectrum 

density matrix of output responses into the same form as 

conventional matrix decomposition in modal analysis. 

Consequently, a first-order linear approximation of the 

output power spectrum density matrix is used for the 

estimation of mode shapes and damping coefficient. 

Although powerful for closed-spaced natural frequency 

identification, SVD requires the availability of pre-selected 

natural frequencies and is applicable only when the 

assumptions are valid. 

 

II. HILBERT TRANSFORM 

The Hilbert transform of a function f(x) is defined by: 

         

 
 Theoretically, the integral is evaluated as 

a Cauchy principal value. Computationally one can 

write the Hilbert transform as the convolution:   

 

 
 which by the convolution theorem of 

Fourier transforms, may be evaluated as the 

product of the transform of f(x) with -i*sgn(x), 

where: 

 

 
 The Hilbert transform can be considered 

to be a filter which simply shifts phases of all 

frequency components of its input by –π/2 radians. 

 

An “analytic” (complex time) signal Y(t) can be 

constructed from a real-valued input signal y(t): 

Y(t) = y(t) + j h(t) 

where, 

 Y(t) is the analytic signal constructed 

from y(t) and its Hilbert transform 

 y(t) is the input signal 

 h(t) is the Hilbert Transform of the input 

signal 

The real and imaginary parts can be expressed in polar 

coordinates as: 

 Y(t) = A(t) exp[jψ(t)] 

where, 

 A(t) is the “envelope” or amplitude of the 

analytic signal 

 ψ is the phase of the analytic signal (the 

derivative of ψ is called the “instantaneous 

frequency”) 

 

III. RESULT AND DISCUSSION 

3.1 Single Sideband Modulation Via The Hilbert 

Transform 

This demo shows the use of the discrete Hilbert 

Transform in Single Sideband Modulation. 

 

The Hilbert Transform finds applications in modulators 

and demodulators, speech processing, medical imaging, 

direction of arrival (DOA) measurements, essentially 

anywhere complex-signal (quadrature) processing simplifies 

the design.                              

 

 3.2 Introduction                                                                        

Single Sideband (SSB) Modulation is an efficient form of 

Amplitude Modulation (AM) that uses half the bandwidth 

used by AM. This technique is most popular in applications 

such as telephony, HAM radio, and HF communications, 

i.e., voice-based communications. This demo shows how to 

implement SSB Modulation using a Hilbert Transformer.  

To motivate the need to use a Hilbert Transformer in 

SSB modulation, it's helpful to first quickly review double 

sideband modulation.  

3.2.1 Double Sideband Modulation 

A simple form of AM is the Double Sideband (DSB) 

Modulation, which typically consists of two frequency-

shifted copies of a modulated signal on either side of a 

carrier frequency. More precisely this is referred to as a 

DSB Suppressed Carrier, and is defined as  

 
where m[n] is usually referred to as the message signal 

and fo is the carrier frequency. As shown in the equation 

above, DSB modulation consists of multiplying the message 

signal m[n] by the carrier cos(2*pi*fo*n/fs), therefore, we 

can use the modulation theorem of Fourier transforms to 

calculate the transform of f[n]  

 
where M(f) is the Discrete-time Fourier Transform 

(DTFT) of m[n].  

 
Below we calculate and plot the mean-square (power) 

spectrum of the message signal. 

h = spectrum.periodogram; 

opts = msspectrumopts(h,m); 

opts.NFFT = 4096; 

opts.Fs = Fs; 

opts.CenterDC = true; 

msspectrum(h,m,opts) 

% Let's zoom into the area of interest. 
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Xlims = get(gca,'xlim'); 

set(gca,'xlim',Xlims,'ylim',[-75 12]) 

 
The double-sided power spectrum clearly shows the 

three tones near DC. If we zoom in further we'll be able to 

read the power of each component.  

set(gca,'xlim',[0.1 1],'ylim',[-18 2]) 

 

 
The blue solid line is the modulated message signal, and 

the red dotted line is the slow varying message signal. The 

power spectrum of our modulated signal is then  

msspectrum(h,f,opts) 

 

% Let's zoom into the area of interest. 

Xlims = get(gca,'xlim'); 

set(gca,'xlim',Xlims,'ylim',[-75 0]) 

set(gcf,'color','white'); 

 
We can see that the message signal (three tones), has 

been shifted to the center frequency fo. Moreover, each 

component's power has been reduced to one quarter, due to 

the amplitudes being halved, as indicated by the DTFT of 

the modulated m[n].  

 
Our positive frequency components are now at -6, -18, 

and -12 dB. 

Using the message signal m[n] defined above we'll 

create an analytic signal by employing the Hilbert 

Transform, which will then be modulated to the desired 

center frequency. The scheme is shown in the diagram 

below.  

 
Using this method of spectral shifting will ensure that 

the power of our signal is shifted to the frequency of interest 

while maintaining a real-valued signal in the end.  

As we indicated earlier the analytic signal is made up of 

the original real-valued signal plus the Hilbert Transform of 

that real signal. Running the real signal by the hilbert 

function in the Signal Processing Toolbox™ will produce 

an analytic signal.  
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As shown in the spectrum plot, our analytic signal is 

complex and only contains positive frequency components. 

Moreover, if we measure the power, or zoom in our plot 

further at the positive frequency component we'll see that 

the power of the frequency components of the analytic 

signal is twice the total power of the positive (or negative) 

frequency component of the real signal, i.e., it's similar to a 

one-sided spectrum which contains the signal's total power. 

See zoomed-in plot below.  

 
We see that the power of the analytic (complex) signal's 

frequency components 500, 600, and 700 Hz are roughly 0, 

-6, and 6 dB, respectively, which is the original signal's total 

power. These values correspond to our original real-valued 

signal which has three tones with amplitudes of 1, 0.5, and 

2, respectively.  

 
As shown in the plot above our signal has been 

modulated to a new center frequency of fo without creating 

the frequency pairs, i.e., it resulted in upper sideband.  

If we compare the spectral plot above with that of the 

DSB modulation we can see that the Spectral Shifter 

accomplished the SSB modulation.  

 

 

IV. CONCLUSION 

This paper based on the literature survey of different 

literature papers. Hilbert Transform faces several challenges 

in dealing with closely-spaced frequency components, 

short-time and weak disturbances, and interrelationships 

between two time-varying modes of nonlinear vibration due 

to its mixed mode problem associated with empirical mode 

decomposition (EMD). To address these challenges, 

analytical mode decomposition (AMD) based on Hilbert 

Transform is proposed and developed for an adaptive data 

analysis of both stationary and non-stationary responses. 
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