L (δ^* -OPEN, OPEN) MAPPINGS

¹Bhopal Singh Sharma and ²Hamant Kumar Department of Mathematics ¹N. R. E. C. College, Khurja-203131, U. P., (India) ²Government Degree College, Bilaspur-Rampur-244921, U. P., (India)

Abstract: By using δ^* -open sets of Singal and Yadav [14], we introduce the concept of L (δ^* -open, open) mappings, named as nomenclature of mappings mentioned in paper [5]. This new class of L (δ^* -open, open) mappings is a super class of strongly continuous mappings of Levine [6] and a subclass of the class of strongly θ -continuous mappings of Noiri [11] as well as that of super continuous mappings of Munshi and Bassan [10]. L (δ^* -open, open) mappings are shown as independent of strongly semicontinuous mappings due to yadav [16]. Various characterizations and some preservation properties of the new mappings are investigated.

Key words: δ -open, δ^* -open sets; strongly continuous, strongly semcontinuous, L (δ^* -open, open), super continuous and strongly θ -continuous mappings. **2010Mathematics subject classification**: 54C05, 54C08, 54C10.

1. Introduction

In 1960, Levine [6] introduced the concept of strongly continuous mappings in topological spaces and obtained their properties. In 1963, Levine [7] introduced the notion of semi-open sets as a generalization of open sets. In 1966, Velico [13] introduced the concepts of θ -open and δ -open sets and obtained their properties. In 1974, Arya and Gupta [1] introduced completely continuous mappings and obtained their characterizations. In 1980, by using θ -open sets, Noiri [11] introduced strongly θ -continuous mappings. In 1981, Jain [4] introduced the concepts of totally continuous mappings. In 1982, Munshi and Bassan [10] introduced the notion of super continuous mappings. In 1987, Singal and Yadav [14] introduced a weak form of δ -open set is called δ^* -open set. In 1988, Yadav [16] introduced the concept of almost feebly continuous functions and obtained their properties.

2. Preliminaries

A subset G of a space X is defined as δ -open [13] if for each $x \in G$, there exists a regular open set H such that $x \in H \subset G$. Similarly, Singal and Yadav [14] defined $G \subset X$ to be δ^* open if for each $x \in G$, there exists a clopen set H such that $x \in H \subset G$. A set A is δ^* -closed (resp. δ -closed) iff X - A is δ^* -open (resp. δ -open) and (δ^* -clopen if it is both δ^* -open and δ^* -closed). The collection of all δ^* -open sets in a space (X, \mathfrak{I}), denoted by δ^* -O(X, \mathfrak{I}), is a topology \mathfrak{I}^* on X, called O-dimensionalization [14]of \mathfrak{I} . They further showed that $\mathfrak{I} = \mathfrak{I}^*$ iff the space (X, \mathfrak{I}) is a O-dimensional space. $A \subset X$ is said to be **semiopen** [7] (resp. **feebly-open** [9]) if $G \subset A \subset cl(G)$, (resp. $G \subset A \subset s\text{-}cl(G)$, where s-cl denotes semiclosure) for some open set G. A is called θ -open [13] if for each $x \in A$, there exists an open set G such that $x \in G \subset cl(G) \subset A$. Obviously, every δ^* -open set is δ -open as well as θ -open. However, in $X = \{a, b, c\}$ with $\mathfrak{I} = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a\}$ is δ -open but not δ^* -open and in the usual space of reals an open interval (a, b) is θ -open but not δ^* -open. The smallest δ^* -closed set containing A is called δ^* -closure of A denoted by δ^* -cl(A), and the largest δ^* -open set in A is called δ^* -interior of A, denoted by δ^* -int(A). A is δ^* -closed (resp. δ^* -open) iff $A = \delta^*$ -cl(A) (resp. $A = \delta^*$ -int(A)). Making use of δ^* -open sets, we introduce a new class of mappings called L (δ^* -open, open) mapping. This new class of mappings contains the class of strongly continuous mappings [6] properly and is contained in the classes of strongly θ -continuous mappings [11] as well as super continuous mappings [10].

3. Definitions and characterizations

3.1 Definition. A mapping $f : X \to Y$ is said to be L (δ^* -open, open) at $x \in X$, if to every open set M containing f (x), there exists a δ^* -open set N containing x such that f (N) \subset M. f is said to be L (δ^* -open, open) if it is L(δ^* -open, open) at each $x \in X$.

3.2 Definition. A set $G \subset X$, is said to be δ^* -open neighborhood [14] of $x \in X$, if there exists a δ^* -open set H such that $x \in H \subset G$.

3.3 Theorem. For a mapping $f : X \rightarrow Y$, the following are equivalent:

(a) f is L (δ^* -open, open).

(b) Inverse images of every open set is δ^* -open. i. e. f is I (δ^* -open, open).

(c) Inverse image of every closed set is δ^* -closed i.e. f is I (δ^* -closed, closed).

(d) $f(\delta^*-cl(A)) \subset cl(f(A))$ for each subset A of X.

(e) δ^* -cl(f⁻¹(B)) \subset f⁻¹(cl(B)) for each subset B of Y.

(f) For each point x of X and for each neighborhood M of f(x), there exists a δ^* -open neighborhood N of x such that $f(N) \subset M$.

Proof. The proof is easy to establish.

3.4 Theorem. For a bijection $f : X \rightarrow Y$, the following are equivalents:

(a) F is L (δ^* -open, open)

(b) $Int(f(A)) \subset f(\delta^*-int(A))$ for each subset A of X.

(c) f $^{-1}(int(B)) \subset \delta^*-int(f ^{-1}(B))$ for each subset B of Y.

Proof. (a) \Rightarrow (b). For each subset A of X, $\operatorname{int}(f(A)) \subset f(A) \Rightarrow f^{-1}(\operatorname{int}(f(A))) \subset A \Rightarrow \delta^*-\operatorname{int}(f^{-1}(\operatorname{int}(f(A)))) \subset \delta^*-\operatorname{int}(A)$ or $f^{-1}(\operatorname{int}(f(A))) \subset \delta^*-\operatorname{int}(A)$. Thus, $\operatorname{int}(f(A)) \subset f(\delta^*-\operatorname{int}(A))$.

 $(b) \Rightarrow (c). \text{ For } B \subset Y, f^{-1}(B) \subset X, \text{ so , int}(f(f^{-1}(B))) \subset f(\delta^*-\text{int}(f^{-1}(B))) \text{ or, int}(B) \subset f(\delta^*-\text{int}(f^{-1}(B))) \text{ or, } f^{-1}(\text{int}(B)) \subset \delta^*-\text{int}(f^{-1}(B)).$

(c) \Rightarrow (a). If A is open in Y, then, f⁻¹(int(A)) $\subset \delta^*$ -int(f⁻¹(A)) $\Rightarrow A \subset f(\delta^*$ -int(f⁻¹(A))) $\Rightarrow f^{-1}(A) \subset \delta^*$ -int(f⁻¹(A)). Thus f⁻¹(A) is δ^* -open.

Singal and Yadav [14] have shown that the collection of all clopen sets in a space (X, \mathfrak{I}) forms a base for a topology \mathfrak{I}^* and A is \mathfrak{I}^* -open iff A is δ^* -open in (X, \mathfrak{I}). The subtopology \mathfrak{I}^* is called **O-dimensionalization** [14] of \mathfrak{I} . Also, a space is O-dimensional iff $\mathfrak{I} = \mathfrak{I}^*$. Using this, we have

3.5 Theorem. For a mapping $f : (X, \mathfrak{I}) \to Y$, the following are equivalent:

(a) f is L (δ^* -open, open).

- (b) $f: (X, \mathfrak{I}^*) \to Y$ is continuous.
- (c) f is continuous provided X is O-dimensional.

Proof. Obvious.

4. Comparisions

4.1 Definition. A mapping $f : X \rightarrow Y$ is said to be **super continuous** [10] (resp. Completely continuous [1], totally continuous [4], strongly θ -continuous [11]) if inverse image of every open set in Y is δ -open (resp. regular open, clopen, θ -open) set in X,

Since every δ^* -open set is δ -open, so every L (δ^* -open, open) mapping is super continuous but the converse is not true as shown in the following example:

4.2 Example. If $X = \{a, b, c\}, \Im = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the identity map on (X, \Im) is super continuous but not L (δ^* -open, open).

Singal and Yadav [14] have shown that every regular open set is clopen in an extremally disconnected space. So we conclude that every δ -open set is δ^* -open in an extremally disconnected space and hence every super continuous (or completely continuous) mapping on an extremally disconnected space is L (δ^* -open, open).

The following example shows the necessity of extremally disconnectedness of the domain space.

4.3 Example. Let $X = \{p, q, r, s\}$ and $\mathfrak{I} = \{\phi, X, \{p\}, \{q, r\}, \{p, q, r\}\}$, and $Y = \{a, b, c\}$ with $\psi = \{\phi, Y, \{a\}, \{c\}, \{a, c\}\}$. Then $f : (X, \mathfrak{I}) \to (Y, \psi)$ defined by f(p) = b, f(q) = a = f (r), f(s) = b is completely continuous and hence super continuous but not L (δ^* -open, open).

Moreover, every δ^* -open set is θ -open, therefore, every L (δ^* -open, open) mapping is strongly θ -continuous but the converse is not true in general, as following example shows.

4.4 Example. The identity map on the real line R is strongly θ -continuous but not L (δ^* -open, open).

Since closure of an open set is open in an externally disconnected space, so every θ -open set is δ^* -open and hence every strongly θ -continuous mapping on an extremally disconnected space is L (δ^* -open, open).

4.5 Definiton. A mapping $f : X \to Y$ is said to be **strongly continuous** [6] (resp. **strongly semicontinuous** [16]) if $f(cl(A)) \subset f(A)$ (resp. $f(s-cl(A)) \subset f(A)$) for every subset A of X.

Obviously, every strongly continuous map is L (δ^* -open, open) but the converse is true provided the domain space is discrete, otherwise, the following example.

4.6 Example. If $X = \{a, b\}$ with indiscrete topology on X, then the identity map on X is L (δ^* -open, open) but not strongly continuous.

The mappings being L (δ^* -open, open) and being strongly semicontinuous are independent concepts as the following example shows:

4.7 Example [16]. Let X be the set of reals with the usual topology and let $Y = \{a, b\}$ with discrete topology. The map $f : X \rightarrow Y$ defined by

$$f(x) = \begin{cases} a \text{ if } -\infty < x < 0 \\ b \text{ if } 0 < x < \infty \end{cases}$$

is strongly semicntinuous but not L (δ^* -open, open). The L (δ^* -open, open) mapping discussed in **Example 4.6** is not even strongly semi-continuous.

The following example shows that even a homeomorphism may fail to be $L(\delta^*$ -open, open).

4.8 Example. Let $X = \{x, y, z\}$, $\Im = \{\phi, X, \{y\}, \{z\}, \{y, z\}\}$. Then the identity map on (X, \Im) is homeomorphism but not L (δ^* -open, open). It also shows that a bijective na-continuous map carrying δ -open (resp. δ -closed) sets on to δ -open (resp. δ -closed) sets may fail to be L (δ^* -open, open).

Thus we have the following Implication diagram:

strongly continuous mappings

strongly semcontinuous mappings mappings

L (δ^* -open, open) \rightarrow super continuous mappings

Where, \rightarrow indicates implies but not implied by and \longleftrightarrow indicates independence. 5. Properties of L (δ^* -open, open) mappings

5.1 Theorem.

(a) Every constant map is L (δ^* -open, open).

(b) Every mapping with domain a discrete space is L (δ^* -open, open).

(c) Every mapping with codomain an indiscrete space is L (δ^* -open, open).

(d) If $f: X \to Y$ is L (δ^* -open, open) then it remains so if the topology on X is replaced by a finer topology and / or the topology on Y is replaced by a coarser topology.

5.2 Definition. A mapping is said to be S-continuous [15] (resp. semi continuous [7], slightly semicontinuous [14], feeble continuous [3], almost feeble continuous [12], faintly continuous [8]) iff inverse image of every semiopen (resp. open, clopen, open, δ -open) set is open (resp. semiopen, semiopen, feebly open, α -open (or feebly open) open) set respectively.

5.3 Definition. A mapping is said to be **D** (δ^* -open, δ -open) (resp. **D** (δ^* -closed, δ -closed)) if it maps δ^* -open (resp. δ^* -closed) sets on to δ -open (resp. δ -closed) sets.

5.4 Theorem. Regarding composite mappings, the following are easy to establ	lish.
For $f: X \rightarrow Y$, and $g: Y \rightarrow Z$, gof is	
(a) L (δ^* -open, open) whenever f is L (δ^* -open, open) and g is continuous.	
(b) Semicontinuous whenever f is slightly semicontinuous and g is	L (δ [*] -open
open).	

5.5 Theorem.

 $\begin{array}{ll} \text{(a) If } g:Y \to Z \text{ is an open map, gof}: X \to Z \text{ is } L (\delta^*\text{-open, open) then} & f:X \to Y \text{ is} \\ L (\delta^*\text{-open, open).} \\ \text{(b) If } f:X \to Y \text{ is } L (\delta^*\text{-open, open) and } D (\delta^*\text{-open, open) map and} & g:Y \to Z \text{ then} \\ \text{gof is } L (\delta^*\text{-open, open) iff } g \text{ is } L (\delta\text{-open, open).} \\ \text{(c) Let } f:X \to Y \text{ be } L (\delta^*\text{-open, open) surjection and } g:Y \to Z. \text{ If gof is} & D (\delta^*\text{-open, } \delta\text{-} \\ \text{open), (or } D (\delta^*\text{-closed}, \delta\text{-closed }) \text{ so is } g. \\ \text{(d) Let } f:X \to Y \text{ and } g:Y \to Z \text{ be } L (\delta^*\text{-open, open) injection. If gof is} & D (\delta^*\text{-open, } \delta\text{-} \\ \text{open (or } D (\delta^*\text{-closed}, \delta\text{-closed }) \text{ so is } f. \end{array}$

5.6 Corollary.

(a) Composition of two L (δ*-open, open) mappings is L (δ*-open, open).
(b) If f: X → Y is faintly continuous, g: Y → Z is L(δ*-open, open) then gof is continuous.
(c) If f: X → Y is almost feeble continuous and g: Y → Z is L(δ*-open, open), then gof is feeble continuous.

5.7 Theorem. Restriction of an L (δ^* -open, open) map is L (δ^* -open, open).

Proof. Let $f: X \to Y$ be L (δ^* -open, open). $A \subset X$, $f_A: A \to Y$, Let G be open in Y, then $f^{-1}(G)$ is δ^* -open in X. To show $f_A^{-1}(G) = f^{-1}(G) \cap A$, δ^* -open in A. If $x \in f_A^{-1}(G)$, then there exists a clopen set H such that $x \in H \subset f^{-1}(G)$ and hence $x \in (H \cap A) \subset f_A^{-1}(G)$ showing $f_A^{-1}(G)$ is δ^* -open in A.

5.8 Theorem. Let $X = A \cup B$, where A and B are clopen sets in X. Let $f : A \to Y$ and $g : B \to Y$ be L (δ^* -open, open). If f(x) = g(x) for every x in $A \cap B$, then $h : X \to Y$ defined by h(x) = f(x) if x in A and h(x) = g(x) if x is in B, is L (δ^* -open, open). **Proof.** Let G be open in Y. Then $h^{-1}(G) = f^{-1}(G) \cup g^{-1}(G)$ is δ^* -open in X as both $f^{-1}(G)$ and $g^{-1}(G)$ are δ^* -open in clopen sets A and B respectively and hence δ^* -open in X.

5.9 Corollary.

(a) Let $X = \bigcup \{A_{\lambda} : \lambda \in A\}$, where A_{λ}^{s} are clopen and pairwise disjoint and $f_{\lambda} : A_{\lambda} \to Y$ be L (δ^{*} -open, open) for each λ . Then $h : X \to Y$ defined by $h(x) = f_{\lambda}(x)$ if $x \in A_{\lambda}$ is L(δ^{*} -open, open).

(b) Let $X = \bigcup X_i$ where X_i^{s} are clopen sets in X. Then f: $X \to Y$ is $L(\delta^*$ -open, open) is $L(\delta^*$ -open, open) iff the restriction f_{X_i} is $L(\delta^*$ -open, open) for each i.

5.10 Theorem. If the graph map $g : X \to X \times Y$ of $f : X \to Y$ defined by g(x) = (x, f(x)) for each $x \in X$ is L (δ^* -open, open) then so is f.

Proof. If $x \in X$ and V is any open set containing f (x) then $X \times V$ is open in $X \times Y$ containing (x, f(x)), so, there exists a δ^* -open set U in X, such that $g(U) \subset X \times V$. hence f $(U) \subset V$.

5.11 Theorem. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be L (δ^* -open, open) maps. If $X = X_1 \times X_2$, $Y = Y_1 \times Y_2$ then $f : X \to Y$ defined by f (x_1, x_2) = ($f_1(x_1), f_2(x_2)$) is L (δ^* -open, open).

Proof. Let G_1 be open in Y_1 and G_2 be open in Y_2 . Then $G_1 \times G_2$ is basic open in Y and hence $f_1^{-1}(G_1) \times f_2^{-1}(G_2)$ is δ^* -open in X.

5.12 Corollary. Let $\{X_{\lambda} : \lambda \in A\}$ and $\{Y_{\lambda} : \lambda \in A\}$ be two families of topological spaces. If $f_{\lambda} : X_{\lambda} \to Y_{\lambda}$ is L (δ^* -open, open) then the map $f : \prod X_{\lambda} \to \prod Y_{\lambda}$ defined by $f(\{x_{\lambda}\}) = \{f_{\lambda} (x_{\lambda})\}$ is L (δ^* -open, open) for each λ .

5.13 Theorem. If $f: X \to \prod X_{\lambda}$ is L (δ^* -open, open) then P_{λ} of $X \to X_{\lambda}$ is L (δ^* -open, open) and conversely where P_{λ} is λ th projection.

Proof. Since all projections are continuous, so the composition map P_{λ} of is L (δ^* -open, open). Conversely, if $G = p_{\lambda}^{-1}(U)$ for some λ is any member of the defining subbase for the product space, then $f^{-1}(G) = f^{-1}(p_{\lambda}^{-1}(U)) = (p_{\lambda} of)^{-1}(U)$ is δ^* -open in X.

5.14 Theorem. A map $f : X \to (Y, U)$ is L (δ^* -open, open) iff $f : X \to (f(X), U_{(f(X))})$ is L (δ^* -open, open) where $U_{f(X)}$ is relativization of U to f(X).

Proof. If H is open in $U_{f(X)}$ then $H = G \cap f(X)$ for some open set G in (Y, U) and $f^{-1}(H) = f^{-1}(G)$ is δ^* -open in X. The converse is obvious.

5.15 Theorem. Let $f : X \to Y$ be L (δ^* -open, open). If Z is a space having Y as a subspace then the map $h : X \to Z$ is L (δ^* -open, open).

Proof. Let S be open in Z and $g : Y \to Z$ be the inclusion map. Then $g^{-1}(S)$ is open in Y and $f^{-1}(g^{-1}(S)) = (gof)^{-1} S = h^{-1}(S)$ is δ^* -open.

REFERENCES

- 1. S.P. Arya and R. Gupta , On strongly continuous mappings, Kyungpook Math. J. **14**(1974), 131-143.
- 2. G. I. Chae, T. Noiri and D. W. Lee, On na-continous functions, Kyungpook Math. J. **26**(1986). 73 79.
- 3. C. Dorsett, Feebly continuous images, feebly compact, R₁-spaces and semitopolpgical properties, Pure Math. Manuscript, **6**(1987), 1 17.
- 4. R. C. Jain, Ph. D. Thesis Meerut, University, 1981.
- 5. Sunder Lal, Some stronger forms of continuity and normality in topological spaces, Allahabad Math. Society, II Biennial Conf. Proc., (1990), 23-29.
- N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly, 67(1960), 269.
- 7. N. Levine, Semi open sets and semicontinuity in topological spaces, Amer. Math. Monthly, **70**(1963), 36-41.
- 8. P. E. Long and L. L. Herrington, The T_{θ} -topology and faintly continuous functions, Kyungpook Math. J. **22**(1982), 7-14.
- 9. S. N. Maheshwari and U. D. Tapi, Note on some applications of feebly open sets, M. B. J. Univ. of Saugar (to appear).
- 10. B. M. Munshi and D. S. Bassan, Super continuous mappings, Indian J. Pure Appl. Math, **13**(1982), 229-236.
- 11. T. Noiri, On δ -continuous functions, J. Korean Math . Soc. **16**(1980),

161-166.

- 12. V. Popa, Some properties of almost feebly continuous functions, Demonstration Math. **23**(1990), 985 991.
- N. V. Velicko, H-closed topological spaces, Math. Sb. (Russian), (N. S.), 70 (112), (1966), 98 - 112.
- 14. A. R. Singal and D. S. Yadav, A generalization of semicontinuous mappings, J. Bihar Math. Soc. **11**(1987), 1 9.
- A. R. Singal and D. S. Yadav, S-continuous functions, Ganita Sandesh 2(1988), 82 - 86.
- 16. D. S. Yadav, Ph. D. Thesis, Meerut University, 1988.

