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Abstract: By using *-open sets of Singal and Yadav [14], we introduce the concept of L (*-

open, open) mappings, named as nomenclature of mappings mentioned in paper [5]. This 

new class of L (*-open, open) mappings is a super class of strongly continuous mappings of 

Levine [6] and a subclass of the class of strongly -continuous mappings of Noiri [11] as 

well as that of super continuous mappings of Munshi and Bassan [10]. L (*-open, open) 

mappings are shown as independent of strongly semicontinuous mappings due to yadav [16]. 

Various characterizations and some preservation properties of the new mappings are 

investigated. 
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1. Introduction 

 

 

In 1960, Levine [6] introduced the concept of strongly continuous mappings in topological 

spaces and obtained their properties. In 1963, Levine [7] introduced the notion of semi-open 

sets as a generalization of open sets. In 1966, Velico [13] introduced the concepts of -open 

and -open sets and obtained their properties. In 1974, Arya and Gupta [1] introduced 

completely continuous mappings and obtained their characterizations. In 1980, by using -

open sets, Noiri [11] introduced strongly -continuous mappings. In 1981, Jain [4] 

introduced the concepts of totally continuous mappings. In 1982, Munshi and Bassan [10] 

introduced the notion of super continuous mappings. In 1987, Singal and Yadav [14] 

introduced a weak form of -open set is called *-open set. In 1988, Yadav [16]  introduced 

the notion of strongly semi-continuous mappings. In 1990, Popa [12] introduced the concept 

of almost feebly continuous functions and obtained their properties. 

 

  

2. Preliminaries 

 

A subset G of a space X is defined as -open [13] if for each x G, there exists a regular 

open set H such that x  H  G. Similarly, Singal and Yadav [14] defined G  X to be *-

open if for each x  G, there exists a clopen set H such that x  H  G. A set A is *-closed 

(resp. -closed) iff X - A is *-open (resp. -open) and (*-clopen if it is both *-open and 

*-closed). The collection of all *-open sets in a space (X, ), denoted by *-O(X, ), is a 

topology * on X, called O-dimensionalization [14]of . They further showed that  = * 
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iff the space (X, ) is a O-dimensional space. A  X is said to be semiopen [7] (resp. 

feebly-open [9]) if G  A  cl(G), (resp. G  A  s-cl(G), where s-cl denotes semiclosure) 

for some open set G. A is called -open [13] if for each xA, there exists an open set G such 

that x G  cl(G)  A. Obviously, every *-open set is -open as well as -open. However, 

in X = {a, b, c} with  = {, X, {a}, {b}, {a, b}}. Then A = {a} is -open but not *-open 

and in the usual space of reals an open interval (a, b) is -open but not *-open. The smallest 

*-closed set containing A is called *-closure of A denoted by *-cl(A), and the largest *-

open set in A is called *-interior of A, denoted by *-int(A). A is *-closed (resp. *-open) 

iff A = *-cl(A)  (resp. A = *-int(A)). Making use of *-open sets, we introduce a new class 

of mappings called L (*-open, open) mapping. This new class of mappings contains the 

class of strongly continuous mappings [6] properly and is contained in the classes of strongly 

-continuous mappings [11] as well as super continuous mappings [10].  

 

3. Definitions and characterizations 

 

3.1 Definition. A mapping f : X  Y is said to be L (*-open, open) at          x  X, if to 

every open set M containing f (x), there exists a *-open set N containing x such that f (N)  

M. f is said to be L (*-open, open ) if it is L(*-open, open) at each x  X. 

  

3.2 Definition. A set G  X, is said to be *-open neighborhood [14] of x  X, if there 

exists a *-open set H such that x  H  G. 

 

3.3 Theorem. For a mapping f : X  Y, the following are equivalent: 

(a) f is L (*-open, open). 

(b) Inverse images of every open set is *-open. i. e. f is I (*-open, open). 

(c) Inverse image of every closed set is *-closed i.e. f is I (*-closed, closed). 

(d) f (*-cl(A))  cl(f(A)) for each subset A of X.  

(e) *-cl(f 
–1(B))  f  

–1(cl(B)) for  each subset B of Y. 

(f) For each point x of  X and for each neighborhood M of f(x), there exists a *-open 

neighborhood N of x such that f (N)  M.  

Proof. The proof is easy to establish. 

  

3.4  Theorem. For a bijection f : X  Y, the following are equivalents: 

(a) F is L (*-open, open) 

(b) Int(f(A))  f(*-int(A)) for each subset A of X. 

(c) f  –1(int(B))  *-int(f  –1(B)) for each subset B of Y. 

Proof. (a)  (b). For each subset A of X, int(f(A))  f(A)  f  
–1(int(f(A)))  A  *-int(f  

–

1(int(f(A))))  *-int(A) or f  
–1(int(f(A)))  *-int(A). Thus, int(f(A))  f(*-int(A)). 

 

(b)  (c). For B  Y, f  
–1(B)  X, so , int(f (f  

–1(B)))  f(*-int(f  
–1(B))) or, int(B)  f(*-

int(f  
–1 (B)) or, f  

–1(int(B))  *-int(f  
–1(B)). 
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(c)  (a). If A is open in Y, then, f  
–1(int(A))  *-int(f  

–1(A))  A        f(*-int(f  
–1 (A)) 

 f  
–1(A)  *-int(f  

–1(A)). Thus f  
–1(A) is *-open. 

  

Singal and Yadav [14] have shown that the collection of all clopen sets in a space (X, ) 

forms a base for a topology * and A is *-open iff A is         *-open in (X, ). The 

subtopology * is called O-dimensionalization [14] of . Also, a space is O-dimensional 

iff  = *. Using this, we have 

 

3.5  Theorem. For a mapping f : (X, )  Y, the following are equivalent: 

(a) f is L (*-open, open). 

(b) f : (X, *)  Y is continuous. 

(c) f is continuous provided X is O-dimensional. 

Proof. Obvious. 

 

4. Comparisions 

 

4.1 Definition. A mapping f : X  Y is said to be super continuous [10] (resp. Completely 

continuous [1], totally continuous [4], strongly -continuous [11]) if inverse image of 

every open set in Y is -open (resp. regular open, clopen, -open) set in X, 

  

Since every *-open set is -open, so every L (*-open, open) mapping is super continuous 

but the converse is not true as shown in the following example: 

 

4.2 Example. If X = {a, b, c},  = {, X, {a}, {b}, {a, b}}.Then the identity map on (X, ) 

is super continuous but not L (*-open, open). 

 

Singal and Yadav [14] have shown that every regular open set is clopen in an extremally 

disconnected space. So we conclude that every -open set is       *-open in an extremally 

disconnected space and hence every super continuous (or completely continuous) mapping 

on an extremally disconnected space is L (*-open, open).  

 

The following example shows the necessity of extremally disconnectedness of the domain 

space. 

 

4.3 Example. Let X = {p, q, r, s} and   = {, X, {p}, {q, r}, {p, q, r}}, and Y= {a, b, c} 

with  = {, Y, {a}, {c}, {a, c}}. Then f : (X, )  (Y, ) defined by f(p) = b, f(q) = a = f 

(r), f(s) = b is completely continuous and hence super continuous but not L (*-open, open). 

 

Moreover, every *-open set is -open, therefore, every L (*-open, open) mapping is 

strongly -continuous but the converse is not true in general, as following example shows. 
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4.4 Example. The identity map on the real line R is strongly -continuous but not L (*-

open, open). 

 

Since closure of an open set is open in an extemally disconnected space, so every -open set 

is *-open and hence every strongly -continuous mapping on an extremally disconnected 

space is L (*-open, open). 

 

4.5 Definiton. A mapping f : X  Y is said to be strongly continuous [6] (resp. strongly 

semicontinuous [16]) if f(cl(A))  f(A) (resp. f(s-cl(A))  f(A)) for every subset A of X.  

 

Obviously, every strongly continuous map is L (*-open, open) but the converse is true 

provided the domain space is discrete, otherwise, the following example. 

 

4.6 Example.  If  X = {a, b} with indiscrete topology on X, then the identity map on X is L 

(*-open, open) but not strongly continuous.  

The mappings being L (*-open, open) and being strongly semicontinuous are independent 

concepts as the following example shows: 

 

4.7 Example [16]. Let X be the set of reals with the usual topology and let Y = {a, b} with 

discrete topology. The map f : X  Y defined by 

      
is strongly semicntinuous but not L (*-open, open). The L (*-open, open) mapping 

discussed in Example 4.6 is not even strongly semi-continuous.  

 

The following example shows that even a homeomorphism may fail to be      L (*-open, 

open). 

 

4.8 Example. Let X = {x, y, z},   = {, X, {y}, {z},{y, z}}. Then the identity map on (X, 

) is homeomorphism but not L (*-open, open). It also shows that a bijective na-continuous 

map carrying -open (resp. -closed) sets on to -open (resp. -closed) sets may fail to be L 

(*-open, open). 

 

 

Thus we have the following Implication diagram: 

 

 

               strongly continuous mappings 

                    

strongly semcontinuous         L (*-open, open)     super continuous mappings                                           

mappings                           mappings 
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                                                    

                      strongly -continuous mappings                                  

                                                                                                                         

                                                 continuous mappings                         

 

 

Where,  indicates implies but not implied by and   indicates independence. 

5. Properties of L (*-open, open) mappings 

 

5.1 Theorem. 

(a) Every constant map is L (*-open, open). 

(b) Every mapping with domain a discrete space is L (*-open, open).  

(c) Every mapping with codomain an indiscrete space is L (*-open, open). 

(d) If f : X  Y is L (*-open, open) then it remains so if the topology on X is replaced by a 

finer topology and / or the topology on Y is replaced by a coarser topology. 

 

5.2 Definition. A mapping is said to be S-continuous [15] (resp. semi continuous [7], 

slightly semicontinuous [14], feeble continuous [3], almost feeble continuous [12], 

faintly continuous [8]) iff inverse image of every semiopen (resp. open, clopen, open, -

open, -open) set is open (resp. semiopen,  semiopen , feebly open, -open (or feebly open)  

open) set respectively.  

 

5.3 Definition. A mapping is said to be D (*-open, -open) (resp.                D (*-closed, -

closed)) if it maps *-open (resp. *-closed) sets on to -open (resp. -closed) sets.  

 

5.4 Theorem. Regarding composite mappings, the following are easy to establish.  

For f : X  Y, and g : Y  Z, gof is  

(a) L (*-open, open) whenever f is L (*-open, open ) and g is continuous.  

(b) Semicontinuous  whenever f is slightly semicontinuous and g is                L (*-open , 

open). 

 

5.5 Theorem.  

(a) If g : Y  Z is an open map, gof : X  Z is L (*-open, open) then            f : X  Y  is 

L (*-open , open). 

(b) If f :  X  Y is L (*-open , open ) and D (*-open , open ) map and          g : Y  Z then 

gof is L (*-open , open ) iff g is L (-open ,open).  

(c) Let f : X  Y be L (*-open, open) surjection and g : Y  Z. If gof is       D (*-open,  -

open ) , (or D (*-closed , -closed ) so is g.  

(d) Let f: X  Y and g: Y Z be L (*-open, open) injection. If gof is          D (*-open, -

open (or D (*-closed, -closed ) so is f. 
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5.6 Corollary.  

(a) Composition of two L (*-open, open) mappings is L (*-open, open). 

(b) If f : X  Y is faintly continuous, g : Y  Z is L(*-open, open) then gof is continuous. 

(c) If f : X  Y is almost feeble continuous and g : Y  Z is                    L(*-open, open), 

then gof is feeble continuous. 

 

5.7 Theorem. Restriction of an L (*-open, open) map is L (*-open, open). 

Proof. Let f : X  Y be L (*-open, open). A  X, fA : A  Y, Let G be open in Y, then f  
–

1 (G) is *-open in X . To show f A 
–1(G) = f  

–1(G)  A,    *-open in A. If x  f A 
–1 (G), then 

there exists a clopen set H such that x  H  f  
–1(G) and hence x  (H  A)  f A 

–1(G) 

showing f A 
–1(G) is *-open in A. 

  

5.8 Theorem. Let X = A  B, where A and B are clopen sets in X. Let              f : A  Y 

and g : B  Y be L (*-open, open). If f (x) = g(x) for every x in   A  B, then h : X  Y 

defined by h (x) = f(x) if x in A and h(x) = g(x) if x is in B, is L (*-open, open). 

Proof. Let G be open in Y. Then h–1(G) = f –1 (G)  g –1 (G) is *-open in X as both f –1(G) 

and g –1(G) are *–open in clopen sets A and B respcdivaly and hence *-open in X. 

  

5.9 Corollary. 

(a) Let X =  {A  :   }, where A
s are clopen and pairwise disjoint and   f : A  Y be 

L (*-open, open) for each . Then h : X  Y defined by     h(x) = f(x) if x  A is L(*-

open, open). 

(b) Let X =  Xi where Xi 
s are clopen sets in X. Then f: X  Y is                 L (*-open, 

open) is L (*-open, open) iff the restriction fXi is                          L (*-open, open) for each 

i. 

 

5.10 Theorem. If the graph map g : X  X  Y of f : X  Y defined by g(x) = (x, f(x)) for 

each x  X is L (*-open, open) then so is f. 

Proof. If  x  X  and V is any open set containing f (x) then X  V is open in X  Y 

containing (x, f(x)), so, there exists a *-open set U in X, such that g(U)  X  V. hence f 

(U)  V.  

 

5.11 Theorem. Let f1 : X1  Y1 and f2 : X2   Y2 be L (*-open, open) maps. If X = X1    

X2, Y = Y1  Y2 then f : X  Y defined by f (x1, x2) =            (f1(x1) , f2(x2)) is L (*-open, 

open).  

Proof.  Let G1 be open in Y1 and G2 be open in Y2. Then G1  G2 is basic open in Y and 

hence f1
–1 (G1)  f2

–1(G2) is *–open in X.  
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5.12 Corollary. Let {X :   } and {Y :   } be two families of topological spaces. If f 

: X  Y is L (*-open, open) then the map               f :  X   Y defined by f({x}) = 

{f (x)} is L (*-open, open) for each . 

 

5.13 Theorem. If f : X   X  is L (*-open, open) then Pof  : X  X is  L (*-open, 

open) and conversely where P is th  projection. 

Proof. Since all projections are continuous, so the composition map Pof is L (*-open, 

open). Conversely, if G = p–1(U) for some  is any member of the defining subbase for the 

product space, then f –1(G) = f–1(p–1(U)) =         (pof) –1(U) is *-open in X. 

  

5.14 Theorem. A map f : X (Y, U) is L (*-open, open) iff f : X  (f(X), U(f(X)) is L (*-

open , open) where Uf(X) is relativization of  U to f(X). 

Proof. If H is open in Uf(X) then H = G  f(X) for some open set G in (Y, U) and f –1(H) = f –

1 (G) is *-open in X. The converse is obvious. 

  

5.15 Theorem. Let f : X  Y be L (*-open, open). If Z is a space having Y as a subspace 

then the map h : X  Z is L (*-open, open). 

Proof.  Let S be open in Z and g : Y  Z be the inclusion map. Then g –1(S) is open in Y 

and f –1(g–1 (S)) = (gof) –1 S = h–1 (S) is *-open. 

 

REFERENCES 

 

1. S.P. Arya and R. Gupta , On strongly continuous mappings,  Kyungpook  

   Math. J. 14(1974), 131-143. 

2. G. I. Chae, T. Noiri and D. W. Lee, On na-continous functions, Kyungpook   

    Math. J. 26(1986). 73 - 79. 

3. C. Dorsett, Feebly continuous images, feebly compact, R1-spaces and  

    semitopolpgical properties, Pure Math. Manuscript, 6(1987), 1 - 17. 

4. R. C. Jain, Ph. D. Thesis Meerut, University, 1981. 

5. Sunder Lal, Some stronger forms of continuity and normality in topological  

    spaces, Allahabad Math. Society, II Biennial Conf. Proc., (1990), 23-29. 

6. N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly,  

   67(1960), 269. 

7. N. Levine, Semi open sets and semicontinuity in topological spaces, Amer.  

   Math. Monthly, 70(1963), 36-41. 

 

8. P. E. Long and L. L. Herrington, The T-topology and faintly continuous  

   functions, Kyungpook Math. J. 22(1982), 7-14. 

9. S. N. Maheshwari and U. D. Tapi, Note on some applications of feebly  

    open sets, M. B. J. Univ. of Saugar (to appear). 

10. B. M. Munshi and D. S. Bassan, Super continuous mappings, Indian J.  

    Pure Appl. Math, 13(1982), 229-236. 

11. T. Noiri, On -continuous functions, J. Korean Math . Soc. 16(1980),  

http://www.jetir.org/


© 2018 JETIR July 2018, Volume 5, Issue 7                                            www.jetir.org  (ISSN-2349-5162) 

 

JETIR1807587 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 875 

 

      161-166. 

12. V. Popa, Some properties of almost feebly continuous functions,  

      Demonstration Math. 23(1990), 985 - 991. 

13. N. V. Velicko, H-closed topological spaces, Math. Sb. (Russian), (N. S.),  

     70 (112), (1966), 98 - 112. 

14. A. R. Singal and D. S. Yadav,  A generalization of semicontinuous  

      mappings, J. Bihar Math. Soc. 11(1987), 1 - 9. 

15. A. R. Singal and D. S. Yadav, S-continuous functions, Ganita Sandesh  

      2(1988), 82 - 86. 

16. D. S. Yadav, Ph. D. Thesis, Meerut University, 1988.  

 

http://www.jetir.org/

