PRIME E-CORDIAL LABELING OF SOME SPECIAL GRAPHS

¹N.Sujatha, ²Dr.K.Ameenal Bibi, ³T.Ranjani, ⁴S.Priyanka

¹ Associate Professor, AAA, Walajapet,

² Associate Professor, Scholars, Department of Mathematics,

¹ Department of Mathematics,

¹ AAA, Walajapet, Vellore, India.

Abstract: Let G be a simple (p,q) graph and let $f:E(G) \rightarrow \{1,2,3,....n\}$ be a mapping. Then f is called a prime E-cordial labelling of a graph G, if there exists an induced labelling $f^*:V(G) \rightarrow \{0,1\}$ defined by $f^*(V)=\{\sum f(uv/uv) \in E(G) \pmod{2}\}$.

A graph G which admits prime E-cordial labeling is called a prime E-cordial graph.

Here, we have proved that Peterson graph, Fan graph, Flower graph admits prime E-cordial labeling.

Mathematical subject classifications: 05C78

Keywords: Labeling, cordial labeling, E-cordial labeling, prime E-cordial labeling.

I. INTRODUCTION

We consider a finite, connected, undirected and simple graph G=(V(G), E(G)) with p-vertices and q-edges which is denoted by G(p,q). For standard terminology and notations we refer Gathon [4].

Definition 1.1:

The graph labeling is an assignment of numbers to the vertices or edges or both subject to certain conditions.

Definition 1.2:

A binary vertex labeling of a graph G with on induced edge labeling $f^*:E(G) \to \{0,1\}$ defined by $f^*(e=uv) = |f(u)-f(v)|$ is called a cordial labeling if $|v_f(0)-v_{f(1)}| \le 1$ and $|e_f(0)-e_f(1) \le 1$. A graph G is a cordial graph if G admits a cordial labelling.

The concept of cordial labeling was introduced by Ebrahim Cahit (Turkey) as a weaker version of graceful and harmonious labelings. He also investigated several results on this newly defined concept.

Definition 1.3:

Let G be a graph with vertex set V(G) and edge set E(G) and let $f: E(G) \rightarrow \{0,1\}$ define a mapping f^* on V(G) by $f^*(V) = \sum f(uv) / uv \in E(G)$ (mod2). The function f is called an E-cordial labeling of G if $|V_f(0)-V_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$. A graph G is called E-cordial graph if G admits an E-cordial labeling.

In 1997, Yilmag and Cahit[3] introduced E-cordial labeling as a weaker version of edge-graceful labeling and with the blend of cordial labeling.

Definition 1.4:

The Peterson graph is a 3-regular graph with 10 vertices and 15 edges.

Definition 1.5:

The Fan graph is denoted by F_n and described as $F_n = P_n + K_1$, where P_n indicates the path graph with n vertices.

Definition 1.6:

The Helm graph H_n is the graph obtained from a wheel graph W_n by attaching a pendant vertex through an edge tip end rim vertex of W_n .

Definition 1.7:

The Flower graph Fl_n is the graph obtained from a helm H_n by joining each pendant vertices of the helm to the apex vertex. Here the pendant vertices of helm H_n are referred as extended vertices of Fl_n .

2. Main Results:

Theorem 2.1:

Peterson graph P_n admits prime E-cordial labeling.

Proof:

Peterson graph is a 3-regular graph with 10 vertices and 15 edges.

Let u_0, u_1, \dots, u_{14} be the edges and let v_0, v_1, \dots, v_9 be the vertices of the graph.

Let $e_1, e_2, \dots e_5$ be the inner edges.

We defined the labeling as follows f: $E(G) \rightarrow \{1,2,3,5,....15\}$ then the induced function $f^*(V) = \sum f(uv / uv \in E(G) \pmod{2})$

Thus the labeling defined above satisfies the conditions of prime E-cordial labeling.

Hence, the proof.

Illustration 2.2:

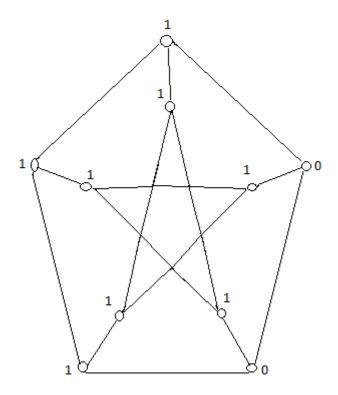


Figure 1: Prime E-cordial labeling of Peterson Pngraph

Theorem 2.3:

The fan graph F_n admits prime E-cordial labeling.

Proof:

Let F_n be a fan graph joining by a path P_n of length n-1.

Let u_0, u_1, \dots, u_{n-1} be the edges and let v_0, v_1, \dots, v_{n-1} be the vertices of the graph.

We defined the labeling function as follows $f: E(G) \longrightarrow \{1,2,3,5,...,n\}$ then the induced function $f^*(v) = \sum f(uv / uv \in E(G) \pmod{2})$ Thus the labeling defined above satisfies the conditions of prime E-cordial labeling. Hence, F_n is a prime E-cordial graph.

Illustration 2.4:

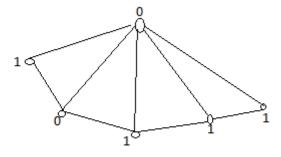


Figure 2: Prime E-cordial labeling of F₈

Theorem 2.5:

The flower graph fl_n admits prime E-cordial labeling.

Proof:

Let fl_n be a flower graph.

The flower graph fl_n joining by a path P_n of length n-1.

Let u_0 be the apex vertex u_1, u_2, \dots, u_n be the rim vertices and let $u_1^1, u_2^1, \dots, u_n^1$ be the external vertices.

We defined the labeling function as follows $f: E(G) \rightarrow \{1,2,3,...n\}$ then the induced function.

 $f^*(V) = \sum f(uv / uv \in E(G) \pmod{2})$

Thus the labeling defined above satisfies the conditions of prime E-cordial labeling. Thus, the flower graph fl_n is a prime E-cordial labeling.

Illustration 2.6:

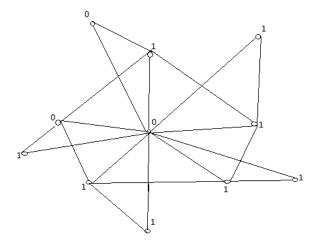


Figure 3: Prime E-cordial labeling of fl₅.

Conclusion:

In this paper, we have obtained prime E-cordial labeling for Peterson graph, Fan graph and the Flower graph. We further motivated to verify the above labeling process for some more special classes of graphs.

References:

- [1] J. Baskar Babujee and S. Babitha, prime cordial labeling on graphs, International journal of Mathematical sciences, 7(1)(2013).
- [2] J. Baskar Babujee and L. Shobana, prime cordial labeling, International Review of Pure and Applied Mathematics, 5(2)(2009), 277-282.
- [3] Z. Cahit, cordial graphs, A weaker version of graceful and harmonious graphs, As combinatorial, 23(1987), 201-207.
- [4] J.A. Gallian, A dynamic survey of graph labeling. The electronics journal of combinatorics. 19(2012) #DS6, 1-260.
- [5] G.V. Ghodarsara and J.P. Jena, on prime cordial labeling of some special graph families, International journal of Mathematics and soft computing, Vol.4, No2(2014) 41-48.
- [6] David W. Bange and Anthony E. Barkauskas, Fibonacci graceful graphs (1980).
- [7] Harary, Graph Theory, Addison Welsely (1969).
- [8] J.A. Bondy and V.S.R. Murthy, Graph Theory & Applications, North-Holland, NewYork, 1976.
- [9] S.K. Vaidya & Lekha Bijukumar, some new results on E-cordial graphs Int. Journal of information science and computer mathematics vol3, p.p 21-29,2011.