MAGNETO SPECTRA STUDIES OF LANTHANIDE NITRATE COMPLEXES OF 2-ETHOXY CARBONYL AMINO 6-METHYL BENZOTHIAZOLE N-OXIDE

Dr. S.K. Gupta, Dr. V.K. Jain*, Brajesh Sharma* and A.K. Sharma Department of Chemistry P.G.V. College Jiwaji ganj, Lashkar, Gwalior 474001. *Department of Chemistry, Ambah P.G. College, Ambah, Morena 476111(India).

The present paper covers the preparation on characterization 2-ethoxy carbonyl amino 6methyl benzothiazole N-oxide (ECAMBTNO) complexes with Lanthanide chloride

Introduction:-The complex behavior of aromatic bases with lanthanide ions studies extensively by many researchers (1-5). In the present study, we report the magneto spectra studies of lanthanide nitrate complexes of 2-ethoxy carbonyl amino 6-methyl benzothiazole N-oxide.

Experimental and discussion

The metal salt and the ligand in Methanol were mixed in molar ratio 1:6 and heated on water bath for 30 min. and kept overnight. The fine crystals so obtained were washed with di-ethyl ether and dried over P₂O₅

On the basis of analytical data (table 1). The general formula LnCl₃(ECAMBTNO)₆, Whre Ln = La,Ce,Pr,Sm,Gd,Dy and Yb has been assigned.

The low value of molar conductivity (table 1), measured at room temperature in freezing nitrobenzene, suggest that all the three chloride ions are within the coordination sphere which is further supported by data (Table 2). By molecular weight data (table 1) magnetic moment values shows little deviation from Van Vleek values, indicating non participation of 4f electrons in band formation . as expected lanthanide salts are paramagnetic (6).

Table 1 Lanthanide Chloride 2-ethoxycarbonylamino 6-methylbenzethiazole N-oxide									
Elemental									
	% Found (Calculated)						Electroma	Molecular	
Complexes						Ω mohm ⁻¹ ,	gnetic	Weight	
	M			N	Anion	cm ² mole ⁻¹		Found	
								(Calculated)	
LaCl ₃ (ECAMBTNO) ₆	8.03	45.16	4.18	9.67	6.14	3.8	Non	1751	
	7.90	45.06	4.09	9.56	6.05		electrolyte	1757.5	
CeCl ₃ (ECAMBTNO) ₆	8.01	45.16	4.17	9.65	6.16	4.6	Non	1751	
	7.96	45.04	4.09	9.55	6.05		electrolyte	1758.5	
PrCl ₃ (ECAMBTNO) ₆	8.12	45.11	4.17	9.67	6.14	3.5	Non	1750	
	8.01	45.01	4.09	9.54	6.05		electrolyte	1759.5	
SmCl ₃ (ECAMBTNO) ₆	8.61	44.87	4.16	9.59	6.11	3.9	Non	1761	
	8.53	44.76	4.07	9.49	6.02		electrolyte	1769.5	
GdCl ₃ (ECAMBTNO) ₆	8.98	44.68	4.14	9.58	6.12	4.4	Non	1765	
	8.89	44.58	4.05	9.46	5.99) Y	electrolyte	1776.5	
DyCl ₃ (ECAMBTNO) ₆	9.21	44.55	4.15	9.57	6.18	4.2	Non	1769	
	9.12	44.46	4.04	9.43	5.98		electrolyte	1781	
YbCl ₃ (ECAMBTNO) ₆	9.74	44.32	4.13	9.49	6.12	3.6	Non	1788	
	9.66	44.21	4.02	9.38	5.94	RA II	electrolyte	1791.5	

Table 2 IR absorption frequencies (cm ⁻¹) of Lanthanide chloride 2-								
ethoxycarbonylamino 6-methylbenzethiazole N-oxide								
				NE /				
Complex	ōNH	v (C=O)	υ (N-O)	ōΝΟ	$\bar{v}(C-S)$	$\bar{\mathbf{v}}\mathbf{M}$ -O		
0 1 1 1	2020	1710	1040	0.40	7.00			
2-ethoxycarbonylamino	3230,	1710	1240	840	760	-		
6-methylbenzethiazole	2150		The state of the s					
N-oxide	3150	1						
LaCl ₃ (ECAMBTNO) ₆	3220	1705	1205	835	755	355		
	3220	1705	1203	033	733	333		
CeCl ₃ (ECAMBTNO) ₆	3225	1715	1190	842	768	365		
	3140							
PrCl ₃ (ECAMBTNO) ₆	3210	1720	1195	832	752	365		
G GI (EGA) (DENA)	2225	1510	1000	0.20	7.50	2.50		
SmCl ₃ (ECAMBTNO) ₆	3225	1718	1208	838	758	360		

	3145					
GdCl ₃ (ECAMBTNO) ₆	3272	1708	1205	835	755	370
DyCl ₃ (ECAMBTNO) ₆	3215	1722	1203	832	760	345
YbCl ₃ (ECAMBTNO) ₆	3225	1715	1205	820	750	350
		-				

In the IR spectra of ECAMBTNO the N-O stretching band appears at 1240 cm⁻¹ (table 2) shows a significant negative shift on complexation indicating coordination of oxygen atom of ligand to the metal ion (7). Supported by small shifting of N-O bending frequencies of ligands which appears at 840 cm⁻¹

The N-H stretching and carbonyl stretching frequencies of urethane part of the ligands are positive to coordination which appears at 3230 cm⁻¹ and 1710 cm⁻¹

respectively (8). The overall IR spectra suggests that ECAMBTNO acts as monodentate 355-370 cm⁻¹ which is ligand. In far IR spectra of complexes a new band appears at tentatively assigned to \bar{v} (M-O). the spectra of free ligands is relatively transparent in this region. A tentative coordination number 9 has been assigned to the complexes.

References

- 1. J.H. Forsberg, coord.chem. Rev., 10, 195, (1973).
- 2. S.A.A. Zaidi and K.S. Siddiqi, J. Anorg, allyl chem., 379, 329, (1970), 35, 655 (1973).
- 3. R.K. Agrawal and S.K. Gupta, Thermo. Chim. Acta, 95, 99, (1985).
- 4. S.C. Nayak, P.K. Das and K.K. Sahoo, Chempap, 57, 91 (2003).
- 5. S.K. Gupta, V.K. jain, Wishu Shivastav and A.K. Sharma, J. of chemical, Biological and physical science, 3(1), 75-79 (2013).
- 6. R.K. Agrawal and S.K. Gupta, croat.chem Acta 59,939 (1987)
- 7. N.M. Karayannis, coord.chem.Rev.11,93(1973).
- 8. R.K. Agrawal and S.K. Gupta Rev.Rou.chim 31,585 (1986).