
© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808034 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 249

QUERY PROCESSING: A FRAMEWORK FOR

INTEGRATING ENTITY RESOLUTION

#1S.MAMATHA, M.Tech Student,

#2V.NEELIMA, Associate Professor,
#3Dr.M.SUJATHA, Associate Professor,

Department Of CSE,

JYOTHISHMATHI INSTITUTE OF TECHNOLOGICAL SCIENCES, KARIMNAGAR T.S.INDIA.

ABSTRACT: Entity resolution is the problem of reconciling database references corresponding to the same real-world entities.

Given the abundance of publicly available databases that have unresolved entities, we motivate the problem of query-time entity

resolution: quick and accurate resolution for answering queries over such ‘unclean’ databases at query-time. Since collective

entity resolution approaches where related references are resolved jointly have been shown to be more accurate than independent

attribute-based resolution for off-line entity resolution, we focus on developing new algorithms for collective resolution for

answering entity resolution queries at query-time. For this purpose, we first formally show that, for collective resolution, precision

and recall for individual entities follow a geometric progression as neighbours at increasing distances are considered. Unfolding

this progression leads naturally to a two stage ‘expand and resolve’ query processing strategy. This paper explores an analysis-

aware data cleaning architecture for a large class of SPJ SQL queries. In particular, we propose QuERy, a novel framework for

integrating entity resolution (ER) with query processing. The aim of QuERy is to correctly and efficiently answer complex

queries issued on top of dirty data. The comprehensive empirical evaluation of the proposed solution demonstrates its significant

advantage in terms of efficiency over the traditional techniques for the given problem settings.

Keywords: entity resolution, relations, query, adaptive.

I. INTRODUCTION

This paper addresses the problem of analysis-aware

data cleaning, wherein the needs of the analysis task dictates

which parts of the data should be cleaned. Analysis-aware

cleaning is emerging as a new paradigm for data cleaning to

support today’s increasing demand for (near) real-time

analytical applications of big data. Modern enterprises have

access to potentially limitless data sources, e.g., web data

repositories, social media posts, clickstream data from web

portals, etc. Analysts/users usually wish to integrate one or

more such data sources (possibly with their own data) to

perform joint analysis and decision making. For example, a

small store owner may discover an online source (e.g., a

web table) containing Amazon’s product pricing and may

wish to compare that pricing with her own pricing. Several

systems have been developed to empower analysts to

dynamically discover and merge data sources. For instance,

Microsoft Power Query provides features to dynamically

find, combine, visualize, share, and query data across a wide

variety of online and offline sources. Another example is

Trifacta [2], a data transformation platform that employs a

predictive interaction framework [15] to enable users to

transform raw data into structured formats. However, to the

best of our knowledge, such systems have not yet

incorporated data cleaning mechanisms.

As a result of merging data from a variety of sources, a

given real-world object may often have multiple

representations, resulting in data quality challenges. In this

paper, we focus on the Entity Resolution (ER) challenge

[6,10], the task of which is to discover duplicate entities that

refer to the same real-world object and then to group them

into a single cluster that uniquely represents that object.

Traditionally, entity resolution, and data cleaning in general,

is performed in the context of data warehousing as an

offline pre-processing step prior to making data available to

analysis – an approach that works well under standard

settings. Such an offline strategy, however, is not viable in

emerging applications that deal with big data analysis. First,

the need for (near) real-time analysis requires modern

applications to execute up-to-the-minute analytical tasks,

making it impossible for those applications to use time

consuming standard back-end cleaning technologies.

Another reason is that in the data analysis scenarios that

motivate our work, an analyst/user may discover and

analyze data as part of a single integrated step. In this case,

the system will know “what to clean” only at analysis time

(while the user is waiting to analyze the data). Last, given

the volume and the velocity of big data, it is often infeasible

to expect that one can fully collect or clean data in its

entirety. Recent work on analysis-aware data cleaning seeks

to overcome the limitations of traditional offline data

cleaning techniques. While such solutions address analysis

aware data cleaning, they are limited to only simple queries

(viz., mention, selection, and/or numerical aggregation

queries) executed on top of dirty data. Data analysis,

however, often requires a significantly more complex type

of queries requiring SQL-style joins. For instance, a user

interested in comparative shopping may wish to find

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808034 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 250

cellphones that are listed on two distinct data sources: Best

Buy and Walmart to compare their ratings and reviews.

Clearly, the query that corresponds to the user’s interest will

require joining Best Buy’s and Walmart’s cellphone-

listings. In contrast to our work, the previous approaches

cannot exploit the semantics of such a join predicate to

reduce cleaning.

Specifically, this paper explores the problem of

analysisaware data cleaning for the general case where

queries can be complex SQL-style selections and joins

spanning single/multiple dirty entity-sets. We propose

QuERy, a novel framework for integrating ER with query

processing. The objective of QuERy is to efficiently and

accurately answer complex SelectProject-Join (SPJ) queries

issued on top of dirty data. The predicates in those queries

may be associated with any attribute in the entity-sets being

queried.

In particular, QuERy leverages the selectivity’s offered by

the query predicates to reduce the amount of cleaning (by

only deduplicating those parts of data that influence the

query’s answer) and thus, minimizes the total execution

time of the query. We propose two variants of QuERy: lazy-

QuERy and adaptive-QuERy. The former uses a lazy

architecture that attempts to avoid cleaning until it is

necessary for the system to proceed. The latter is an

adaptive cost-based technique that tries to devise a good

plan to decide when to perform cleaning. Both solutions rely

on novel polymorphic operators, which are analogous to the

common relational algebra operators (i.e., selections and

joins) with one exception: they know how to test the query

predicates on the dirty data prior to cleaning it. Specifically,

these operators utilize sketches of data to perform inexact

tests to decide whether parts of dirty data satisfy query

predicates.

Overall, the main contributions of this paper are:

 We propose QuERy, a novel framework that

integrates ER with query processing to answer

complex SQL-style queries issued on top of dirty

data (Sections 2 and 4).

 We introduce and formalize the notion of

polymorphic operators – a key concept in QuERy

(Section 5).

 We develop two different solutions: lazy-QuERy

and adaptiveQuERy, which reap the benefits of

evaluating the query predicates to minimize the

query execution time (Sections 6 and 7).

 We conduct extensive experiments to evaluate the

effectiveness of both lazy-QuERy and adaptive-

QuERy solutions on real and synthetic datasets

(Section 8)

II. RELATED WORK

Entity resolution is a well-recognized problem that has

received significant attention in the literature over the past

few decades, e.g. [6, 10]. A thorough overview of the

existing work in this area can be found in surveys [11, 20].

The majority of previous ER research has focused on

improving either its efficiency [16, 21] or quality [5, 7].

With the increasing demand of (near) real-time analytical

applications, recent research has begun to consider new ER

approaches like analysis-aware ER, progressive ER,

incremental ER, etc. Analysis-aware ER. The work on

analysis-aware ER has been proposed in [4, 8, 17, 22, 24],

of which [4, 24] are the most related to our work. The QDA

approach of [4] aims to reduce the number of cleaning steps

that are necessary to exactly answer selection queries. It

works as follows: given a block B, and a complex selection

predicate P, QDA analyzes which entity pairs do not need to

be resolved to identify all entities in B that satisfy P. To do

so, it models entities in B as a graph and resolves edges

belonging to cliques that may change the query answer. To

support a selection query, QDA performs vestigiality

analysis on each block individually to reduce cleaning steps.

QDA is not designed for the larger class of SPJ queries,

which is the context of this paper. In contrast, QuERy

explores a systematic cost-based approach to jointly

optimize both cleaning and query processing over dirty data.

It exploits pruning due to both selection and join predicates.

It only dictates when a block should be cleaned and is

agnostic to how the block is actually cleaned. Thus, it could

exploit vestigiality analysis from QDA at the block level to

reduce the number of entity pairs that are resolved within a

block. In addition, reference [24] is designed to answer

aggregate numerical queries over large datasets that cannot

be fully cleaned. It focuses on cleaning only a sample of

data and utilizing that sample to provide “approximate”

answers to aggregate queries. It does not prune cleaning

steps due to query predicates. However, QuERy deals with

“exact” answers to SPJ queries based on cleaning only the

necessary parts of data needed to answer the query.

Moreover, not only are the two approaches designed for

different types of queries, their motivation is also very

different. While [24] is targeting aggregation over very large

datasets, QuERy targets applications that perform (near)

real-time analysis over dynamic dirty datasets found on the

Web. New ER Approaches. Several approaches, e.g., [3,

26], are considering how to clean the data progressively,

while interactively analyzing the partially cleaned data to

compute better results. Moreover, there has been various

incremental cleaning techniques [12,25]. Such techniques

address the problem of maintaining an up-to-date ER result

when data updates arrive quickly. In addition to such

approaches, the ER research community is exploring other

novel directions. For example, Data Tamer [23], is an end-

to-end data curation system that entails machine learning

algorithms with human input to perform schema integration

and entity resolution. In addition, NADEEF [9] is a general-

purpose data cleaning and repair system that provides

appropriate programming abstractions for users to specify

data cleaning transformations. The focus of QuERy is thus,

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808034 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 251

complementary (though different) to that of [23] and [9]. In

fact, we envision that QuERy could be useful to these

systems to expand their scope to target (near) real-time

analysis-aware applications of diverse data sources found on

the Web.

III. ENTITY RESOLUTION AND QUERIES:

FORMULATION

In this section, we formally introduce the entity resolution

problem and also entity resolution queries, and illustrate

them using a realistic example — that of resolving authors

in a citation database such as CiteSeer or PubMed. In the

simplest formulation of the entity resolution problem, we

have a collection of references, R = {ri}, with attributes

{R.A1, . . . , R.Ak}. Let E = {ej} be the unobserved domain

entities. For any particular reference ri , we denote the entity

to which it maps as E(ri). We will say that two references ri

and rj are co-referent if they correspond to the same entity,

E(ri) = E(rj). Note that in the case of an unresolved

database, this mapping E(R) is not provided. Further, the

domain entities E and even the number of such entities is

not known. However, in many domains, we may have

additional information about relationships between the

references. To model relationships in a generic way, we use

Figure 1: An example set of papers represented as

references connected by hyper-edges. References are

represented as ovals shaded according to their entities. Each

paper is represented as a hyper-edge (shown as a rectangle)

spanning multiple references.

a set of hyper-edges H = {hi}. Each hyper-edge connects

multiple references. To capture this, we associate a set of

references hi .R with each hyper-edge hi . Note that each

reference may be associated with zero or more hyper-edges.

Let us now look at a sample domain to see how it can be

represented in our framework. Consider a database of

academic publications similar to DBLP, CiteSeer or

PubMed. Each publication in the database has a set of

author names. For every author name, we have a reference ri

in R. For any reference ri , ri .N ame records the observed

name of the author in the publication. In addition, we can

have attributes such as R.Email to record other information

for each author reference that may be available in the paper.

Now we come to the relationships for this domain. All the

author references in any publication are connected to each

other by a co-author relationship. This can be represented

using a hyper-edge hi ∈ H for each publication and by

having rj ∈ hi .R for each reference rj in the publication. If

publications have additional information such as title,

keywords, etc, they are represented as attributes of H.

To illustrate, consider the following four papers, which we

will use as a running example:

1. W. Wang, C. Chen, A. Ansari, “A mouse immunity

model”

2. W. Wang, A. Ansari, “A better mouse immunity model”

3. L. Li, C. Chen, W. Wang,“Measuring protein-bound

fluxetine”

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary

cirrhosis”

To represent them in our notation, we have 10 references

{r1, . . . , r10} in R, one for each author name, such that

r1.N ame = ‘W Wang’, etc. We also have 4 hyper-edges

{h1, . . . , h4} in H, one for each paper. The first hyper-edge

h1 connects the three references r1, r2 and r3 corresponding

to the names ‘W. Wang’ , ‘C. Chen’ and ‘A. Ansari’. This is

represented pictorially in Figure 1.

Given this representation, the entity resolution task is

defined as the partitioning or clustering of the references

according to the underlying entity-reference mapping E(R).

Two references ri and rj should be assigned to the same

cluster if and only if they are coreferent, i.e., E(ri) = E(rj).

To illustrate, assume that we have six underlying entities for

our example. This is illustrated in Figure 1 using a different

shading for each entity. For example, the ‘Wang’s of papers

1, 2 and 4 are names of the same individual but the ’Wang’

from paper 3 is a reference to a different person. Also, the

‘Chen’s from papers 1 and 3 are different individuals. Then,

the correct entity resolution for our example database with

10 references returns 6 entity clusters: {{r1, r4, r9}, {r8},

{r2}, {r7}, {r3, r5, r10}, {r6}}. The first two clusters

correspond to two different people named ‘Wang’, the next

two to two different people named ‘Chen’, the fifth to

‘Ansari’ and the last to ‘Li’.

Any query to a database of references is called an entity

resolution query if answering it requires knowledge of the

underlying entity mapping E(R). We consider two different

types of entity resolution queries. Most commonly, queries

are specified using a particular value a for an attribute R.A

of the references that serves as a ‘quasi-identifier’ for the

underlying entities. Then the answer to the query Q(R.A =

a) should partition or group all references that have r.A = a

according to their underlying entities. For references to

people, the name often serves as a weak or noisy identifier.

For our example bibliographic domain, we consider queries

specified using R.N ame. To retrieve all papers written by

some person named ‘W. Wang’, we issue a query using R.N

ame and ‘W. Wang’. Since names are ambiguous, treating

them as identifiers leads to undesirable results. In this case,

it would be incorrect to return the set {r1, r4, r8} of all

references with name ‘W Wang’ as the answer to our query.

This answer does not indicate that r8 is not the same person

as the other two. Additionally, the answer should include the

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808034 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 252

reference r9 for ‘W W Wang’, that maps to the same entity

as the author of the first paper. Therefore, the correct answer

to the entity resolution query on ‘W Wang’ should be the

partition {{r1, r4, r9}, {r8}}.

Entity resolution queries may alternatively be specified

using a specific reference. Imagine a CiteSeer user looking

at a paper that contains some author name. The user may be

interested in looking up other papers written by the same

author, even though they may not know who that author is

precisely. Then the correct answer to a query on the

reference r is the group of references that are coreferent to r,

or, in other words, correspond to the same underlying entity.

In our example, consider a query specified using the

reference r1 corresponding to the name ‘W. Wang’ in the

first paper. Then the correct answer to the query is the set of

references {r1, r4, r9}. To distinguish it from the first type

of entity resolution query, note that it does not include the

cluster {r8} corresponding to the other entity that also has

name ‘W. Wang’. This second query type may be answered

by first reducing it to an instance of the first type as Q(R.A

= r1.A), and then selecting the entity corresponding to

reference r1. We denote this as σE(R)=E(r1) (Q(R.A =

r1.A)). In the rest of this paper, we focus only on queries of

the first type.

IV. COLLECTIVE ENTITY RESOLUTION

AND RELATIONAL CLUSTERING

Although entity resolution for queries has not been studied

in the literature, the general entity resolution problem has

received a lot of attention. We review related work in detail

in Section 8. In this section, we briefly review the different

categories of proposed approaches before discussing how

they may be adapted for query-time entity resolution.

In most entity resolution applications, data labeled with the

underlying entities is hard to acquire. Our focus is on

unsupervised approaches for resolving entities.

Traditionally, attributes of individual references, such as

names, affiliation, etc., for person references, are used for

comparing references. A similarity measure is generally

employed over attributes, and only those pairs of references

that have attribute similarity above a certain threshold are

considered to be co-referent. This attribute-based entity

resolution approach (A) often runs into problems. In our

example, it is hard to infer with just attributes that

references r1 and r8 are not co-referent although they have

the same name, while r1 and r9 are co-referent although

their names are different.

When relations between references are available, they may

also be taken into account for computing similarities in the

naive relational entity resolution approach (NR)

(Ananthakrishna et al., 2002; Bhattacharya & Getoor, 2007).

For computing similarities between two references, this

approach additionally considers the attributes of the related

references when comparing the attributes of their related

references. In our example, this approach returns a higher

similarity between r1 (‘W. Wang’) and r9 (‘W. W. Wang’)

than the attribute-based approach, since they have co-

authors r3 and r10 with very similar (identical, in this case)

names. Although this approach can improve performance in

some cases, it does not always work. For instance, the two

‘W. Wang’ references r1 and r8 are not co-referent, though

they both have co-authors with identical names ‘C. Chen’.

Instead of considering the attribute similarities of the related

references, the collective entity resolution approach (Pasula

et al., 2003; Bhattacharya & Getoor, 2004; Singla &

Domingos, 2004; McCallum & Wellner, 2004; Li, Morie, &

Roth, 2005; Dong et al., 2005; Kalashnikov et al., 2005)

takes into account the resolution decisions for them. In our

previous example, the correct evidence to use for the pair of

references r1 and r8 is that their co-author references do not

map to the same entity, although they have similar names.

Therefore, in order to resolve the ‘W. Wang’ references in

the collective resolution approach, it is necessary to resolve

the ‘C. Chen’ references as well, instead of considering the

similarity of their attributes. The collective entity resolution

approach has recently been shown to improve entity

resolution accuracy over the previous approaches but is

computationally more challenging. The references cannot be

resolved independently. Instead, any resolution decision is

affected by other resolutions through hyper-edges.

In earlier work (Bhattacharya & Getoor, 2004, 2006, 2007),

we developed a relational clustering algorithm (RC-ER) for

collective entity resolution using relationships. The goal of

this approach is to cluster the references according to their

entities taking the relationships into account. We associate a

cluster label r.C with each reference to denote its current

cluster membership. Starting from an initial set of clusters C

= {ci} of references, the algorithm iteratively merges the

pair of clusters that are the most similar. To capture the

collective nature of the cluster assignment, the similarity

measure between pairs of clusters considers the cluster

labels of the related references. The similarity of two

clusters ci and cj is defined as a linear combination of their

attribute similarity simA and their relational similarity simR:

 (1)

where α (0 ≤ α ≤ 1) is the combination weight. The

interesting aspect of the collective approach is the dynamic

nature of the relational similarity. The similarity between

two references depends on the current cluster labels of their

related references, and therefore changes when related

references change clusters. In our example, the similarity of

the two clusters containing references ‘W. Wang’ and ‘W.

W. Wang’ increases once their co-author references named

‘A. Ansari’ are assigned to the same cluster. We now briefly

review how the two components of the similarity measure

are defined.

Attribute Similarity: For each reference attribute, we use a

similarity measure that returns a value between 0 and 1 for

two attribute values indicating the degree of similarity

between them. Several sophisticated similarity measures

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808034 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 253

have been developed for names, and popular TF-IDF

schemes may be used for other textual attributes such as

keywords. The measure that works best for each attribute

may be chosen. Finally, a weighted linear combination of

the similarities over the different attributes yields the

combined attribute similarity between two reference

clusters.

Relational Similarity: Relational similarity between two

clusters considers the similarity of their ‘cluster

neighborhoods’. The neighborhood of each cluster is

defined by the hyper-edges associated with the references in

that cluster. Recall that each reference r is associated with

one or more hyper-edges in H. Therefore, the hyper-edge set

c.H for a cluster c of references is defined as

 (2)

This set defines the hyper-edges that connect a cluster c to

other clusters, and are the ones that relational similarity

needs to consider. To illustrate, when all the references in

our running example have been correctly clustered as in

Figure 1(b), the hyper-edge set for the larger ‘Wang’ cluster

is {h1, h2, h4}, which are the hyper-edges associated with

the references r1, r4 and r9 in that cluster.

Given the hyper-edge set for any cluster c, the neighborhood

N br(c) of that cluster c is the set of clusters labels of the

references spanned by these hyper-edges:

(3)

For our example ‘Wang’ cluster, its neighborhood consists

of the ‘Ansari’ cluster and one of the ‘Chen’ clusters, which

are connected by its edge-set. Then, the relational similarity

measure between two clusters, considers the similarity of

their cluster neighborhoods. The neighborhoods are

essentially sets (or multi-sets) of cluster labels and there are

many possible ways to define the similarity of two

neighborhoods (Bhattacharya & Getoor, 2007). The specific

similarity measure that we use for our experiments in this

paper is Jaccard similarity1 :

(4)

Clustering Algorithm: Given the similarity measure for a

pair of clusters, a greedy relational clustering algorithm can

be used for collective entity resolution. Figure 2 shows

high-level pseudo-code for the complete algorithm. The

algorithm first identifies the candidate set of potential

duplicates using a ‘blocking’ approach (Hern´andez &

Stolfo, 1995; Monge & Elkan, 1997; McCallum, Nigam, &

Ungar, 2000). Next, it initializes the clusters

Algorithm RC-ER (Reference set R)

1. Find similar references in R using blocking

2. Initialize clusters using bootstrapping

3. For clusters ci, cj such that similar(ci, cj)

4. Insert hsim(ci, cj), cj , cj i into priority queue

5. While priority queue not empty

6. Extract hsim(ci, cj), ci, cj i from queue

7. If sim(ci, cj) less than threshold, then stop

8. Merge ci and cj to new cluster cij

9. Remove entries for ci and cj from queue

10. For each cluster ck such that similar(cij , ck)

11. Insert hsim(cij , ck), cij , cki into queue

12. For each cluster cn neighbor of cij

13. For ck such that similar(ck, cn)

14. Update sim(ck, cn) in queue

Figure 2: High-level description of the relational clustering

algorithm

of references, identifies the ‘similar’ clusters — or potential

merge-candidates — for each cluster, inserts all the merge-

candidates into a priority queue and then iterates over the

following steps. At each step, it identifies the current

‘closest pair’ of clusters from the candidate set and merges

them to create a new cluster. It identifies new candidate

pairs and updates the similarity measures for the ‘related’

cluster pairs. This is the key step where evidence flows from

one resolution decision to other related ones and this

distinguishes relational clustering from traditional clustering

approaches. The algorithm terminates when the similarity

for the closest pair falls below a threshold or when the list of

potential candidates is exhausted. The algorithm is

efficiently implemented to run in O(nk log n) time for n

references where each ‘block’ of similar names is connected

to k other blocks through the hyper-edges.

3.1 Issues with Collective Resolution for Queries

In previous work, we (and others) have shown that

collective resolution using relationships improves entity

resolution accuracy significantly for offline cleaning of

databases. So, naturally, we would like to use the same

approach for query-time entity resolution as well. However,

while the attribute-based and naive relational approaches

discussed earlier can be applied at query-time in a straight-

forward fashion, that is not the case for collective resolution.

Two issues come up when using collective resolution for

queries. First, the set of references that influence the

resolution decisions for a query need to be identified. When

answering a resolution query for ‘S. Russell’ using the

attribute-based approach, it is sufficient to consider all

papers that have ‘S. Russell’ (or, similar names) as author

name. For collective resolution, in contrast, the co-authors

of these author names, such as ‘P.

Norvig’ and ‘Peter Norvig’, also need to be clustered

according to their entities. This in turn requires clustering

their co-authors and so on. So the first task is to analyze

these dependencies for collective resolution and identify the

references in the database that are relevant for answering a

query. But this is not enough. The set of references

influencing a query may be extremely large, but the query

still needs to be answered quickly even though the answer

may not be completely accurate. So the second issue is

performing the resolution task at query-time. These are the

two problems that we address in the next few sections.

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808034 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 254

V. ADAPTIVE-QUERY SOLUTION

The previous solution is considered lazy since it tries to

delay the cleaning of dirty entities as much as possible.

While such an approach will reduce the cost of cleaning, it

might increase the cost of processing the query. For

example, assume that all sketches end up reaching the

deduplicate operator (viz., the topmost operator in Figure

11), meaning that their corresponding blocks need to be

cleaned. In this case, the time spent in trying to filter away

these blocks is wasted. In fact, cleaning these blocks eagerly

(without passing their sketches up the tree) might be more

efficient. To address this issue, we implement a different

solution which is an adaptive cost-based approach that,

given a query tree (with polymorphic operators) and dirty

entity-sets, can devise a good plan to simultaneously clean

and process the query. The key intuition hinges on placing

decision nodes as the bottommost nodes in the query tree, as

presented in Figure 12. The task of such decision nodes is to

decide if eagerly cleaning some dirty blocks is more

efficient (in terms of the overall query execution time) than

delaying their cleansing until the last stage as in the lazy

solution. The conjecture of placing these nodes at the

bottom is to allow adaptive QuERy to make the “cleaning a

block eagerly versus passing it up the tree” decision, from

the start of query execution time. Note our adaptive solution

is general, and it does not require such nodes to be placed at

the bottom. Our adaptive cost-based solution consists of two

steps. In the first step, we use a sampling technique to

collect different statistics (e.g., selectivity of predicates, cost

of join, etc.). In the second step, the decision nodes utilize

these statistics to make their smart decisions.

VI.CONCLUSIONS

In this paper, we have studied the problem of analysis aware

data cleaning. We have developed QuERy, a novel

architecture for integrating ER with query processing to

answer complex SQL-like queries issued on top of dirty

data. We empirically showed how our approach is

significantly better compared to cleaning the entire dataset,

especially when the query is very selective.

We then proposed a two-stage ‘expand and resolve’ strategy

for answering queries based on this analysis, using two

novel expansion operators. We showed using our analysis

that it is sufficient to consider neighbors up to small

expansion depths, since resolution accuracy for the query

converges quickly with increasing expansion level. The

second challenge for answering queries is that the

computation has to be quick.

REFERENCES

[1] E. Ioannou, W. Nejdl, C. Nieder´ee, and Y. Velegrakis.

On-the-fly entity-aware query processing in the presence of

linkage. VLDB, 2010.

[2] Ananthakrishna, R., Chaudhuri, S., & Ganti, V. (2002).

Eliminating fuzzy duplicates in data warehouses. In The

International Conference on Very Large Databases (VLDB),

Hong Kong, China.

[3] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra.

Progressive approach to relational entity resolution. VLDB,

2014.

[4] H. Altwaijry, D. V. Kalashnikov, and S. Mehrotra.

Query-driven approach to entity resolution. VLDB, 2013.

[5] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.

Eliminating fuzzy duplicates in data warehouses. In VLDB,

2002.

[6] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,

S. E. Whang, and J. Widom. Swoosh: a generic approach to

entity resolution. VLDB J., 2009.

[7] I. Bhattacharya and L. Getoor. Collective entity

resolution in relational data. TKDD, 2007.

[8] I. Bhattacharya and L. Getoor. Query-time entity

resolution. JAIR, 2007.

[9] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I.

F. Ilyas, M. Ouzzani, and N. Tang. Nadeef: a commodity

data cleaning system. In SIGMOD, 2013.

[10] X. Dong, A. Halevy, and J. Madhavan. Reference

reconciliation in complex information spaces. In SIGMOD,

2005.

[11] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.

Duplicate record detection: A survey. TKDE, 2007.

[12] A. Gruenheid, X. L. Dong, and D. Srivastava.

Incremental record linkage. VLDB, 2014.

[13] P. J. Haas and J. M. Hellerstein. Ripple joins for online

aggregation. In SIGMOD Record, 1999.

[14] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller.

Framework for evaluating clustering algorithms in duplicate

detection. VLDB, 2009.

[15] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive

interaction for data transformation.

http://www.jetir.org/

