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ABSTRACT: Entity resolution is the problem of reconciling database references corresponding to the same real-world entities. 

Given the abundance of publicly available databases that have unresolved entities, we motivate the problem of query-time entity 

resolution: quick and accurate resolution for answering queries over such ‘unclean’ databases at query-time. Since collective 

entity resolution approaches where related references are resolved jointly have been shown to be more accurate than independent 

attribute-based resolution for off-line entity resolution, we focus on developing new algorithms for collective resolution for 

answering entity resolution queries at query-time. For this purpose, we first formally show that, for collective resolution, precision 

and recall for individual entities follow a geometric progression as neighbours at increasing distances are considered. Unfolding 

this progression leads naturally to a two stage ‘expand and resolve’ query processing strategy. This paper explores an analysis-

aware data cleaning architecture for a large class of SPJ SQL queries. In particular, we propose QuERy, a novel framework for 

integrating entity resolution (ER) with query processing. The aim of QuERy is to correctly and efficiently answer complex 

queries issued on top of dirty data. The comprehensive empirical evaluation of the proposed solution demonstrates its significant 

advantage in terms of efficiency over the traditional techniques for the given problem settings. 
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I. INTRODUCTION 

This paper addresses the problem of analysis-aware 

data cleaning, wherein the needs of the analysis task dictates 

which parts of the data should be cleaned. Analysis-aware 

cleaning is emerging as a new paradigm for data cleaning to 

support today’s increasing demand for (near) real-time 

analytical applications of big data. Modern enterprises have 

access to potentially limitless data sources, e.g., web data 

repositories, social media posts, clickstream data from web 

portals, etc. Analysts/users usually wish to integrate one or 

more such data sources (possibly with their own data) to 

perform joint analysis and decision making. For example, a 

small store owner may discover an online source (e.g., a 

web table) containing Amazon’s product pricing and may 

wish to compare that pricing with her own pricing. Several 

systems have been developed to empower analysts to 

dynamically discover and merge data sources. For instance, 

Microsoft Power Query provides features to dynamically 

find, combine, visualize, share, and query data across a wide 

variety of online and offline sources. Another example is 

Trifacta [2], a data transformation platform that employs a 

predictive interaction framework [15] to enable users to 

transform raw data into structured formats. However, to the 

best of our knowledge, such systems have not yet 

incorporated data cleaning mechanisms. 

As a result of merging data from a variety of sources, a 

given real-world object may often have multiple 

representations, resulting in data quality challenges. In this 

paper, we focus on the Entity Resolution (ER) challenge 

[6,10], the task of which is to discover duplicate entities that 

refer to the same real-world object and then to group them 

into a single cluster that uniquely represents that object. 

Traditionally, entity resolution, and data cleaning in general, 

is performed in the context of data warehousing as an 

offline pre-processing step prior to making data available to 

analysis – an approach that works well under standard 

settings. Such an offline strategy, however, is not viable in 

emerging applications that deal with big data analysis. First, 

the need for (near) real-time analysis requires modern 

applications to execute up-to-the-minute analytical tasks, 

making it impossible for those applications to use time 

consuming standard back-end cleaning technologies. 

Another reason is that in the data analysis scenarios that 

motivate our work, an analyst/user may discover and 

analyze data as part of a single integrated step. In this case, 

the system will know “what to clean” only at analysis time 

(while the user is waiting to analyze the data). Last, given 

the volume and the velocity of big data, it is often infeasible 

to expect that one can fully collect or clean data in its 

entirety. Recent work on analysis-aware data cleaning seeks 

to overcome the limitations of traditional offline data 

cleaning techniques. While such solutions address analysis 

aware data cleaning, they are limited to only simple queries 

(viz., mention, selection, and/or numerical aggregation 

queries) executed on top of dirty data. Data analysis, 

however, often requires a significantly more complex type 

of queries requiring SQL-style joins. For instance, a user 

interested in comparative shopping may wish to find 

http://www.jetir.org/


© 2018 JETIR  August 2018, Volume 5, Issue 8                                      www.jetir.org  (ISSN-2349-5162) 

JETIR1808034 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 250 

 

cellphones that are listed on two distinct data sources: Best 

Buy and Walmart to compare their ratings and reviews. 

Clearly, the query that corresponds to the user’s interest will 

require joining Best Buy’s and Walmart’s cellphone-

listings. In contrast to our work, the previous approaches 

cannot exploit the semantics of such a join predicate to 

reduce cleaning. 

Specifically, this paper explores the problem of 

analysisaware data cleaning for the general case where 

queries can be complex SQL-style selections and joins 

spanning single/multiple dirty entity-sets. We propose 

QuERy, a novel framework for integrating ER with query 

processing. The objective of QuERy is to efficiently and 

accurately answer complex SelectProject-Join (SPJ) queries 

issued on top of dirty data. The predicates in those queries 

may be associated with any attribute in the entity-sets being 

queried. 

In particular, QuERy leverages the selectivity’s offered by 

the query predicates to reduce the amount of cleaning (by 

only deduplicating those parts of data that influence the 

query’s answer) and thus, minimizes the total execution 

time of the query. We propose two variants of QuERy: lazy-

QuERy and adaptive-QuERy. The former uses a lazy 

architecture that attempts to avoid cleaning until it is 

necessary for the system to proceed. The latter is an 

adaptive cost-based technique that tries to devise a good 

plan to decide when to perform cleaning. Both solutions rely 

on novel polymorphic operators, which are analogous to the 

common relational algebra operators (i.e., selections and 

joins) with one exception: they know how to test the query 

predicates on the dirty data prior to cleaning it. Specifically, 

these operators utilize sketches of data to perform inexact 

tests to decide whether parts of dirty data satisfy query 

predicates. 

Overall, the main contributions of this paper are:  

 We propose QuERy, a novel framework that 

integrates ER with query processing to answer 

complex SQL-style queries issued on top of dirty 

data (Sections 2 and 4).  

 We introduce and formalize the notion of 

polymorphic operators – a key concept in QuERy 

(Section 5).  

 We develop two different solutions: lazy-QuERy 

and adaptiveQuERy, which reap the benefits of 

evaluating the query predicates to minimize the 

query execution time (Sections 6 and 7).  

 We conduct extensive experiments to evaluate the 

effectiveness of both lazy-QuERy and adaptive-

QuERy solutions on real and synthetic datasets 

(Section 8) 

 

II. RELATED WORK 

Entity resolution is a well-recognized problem that has 

received significant attention in the literature over the past 

few decades, e.g. [6, 10]. A thorough overview of the 

existing work in this area can be found in surveys [11, 20]. 

The majority of previous ER research has focused on 

improving either its efficiency [16, 21] or quality [5, 7]. 

With the increasing demand of (near) real-time analytical 

applications, recent research has begun to consider new ER 

approaches like analysis-aware ER, progressive ER, 

incremental ER, etc. Analysis-aware ER. The work on 

analysis-aware ER has been proposed in [4, 8, 17, 22, 24], 

of which [4, 24] are the most related to our work. The QDA 

approach of [4] aims to reduce the number of cleaning steps 

that are necessary to exactly answer selection queries. It 

works as follows: given a block B, and a complex selection 

predicate P, QDA analyzes which entity pairs do not need to 

be resolved to identify all entities in B that satisfy P. To do 

so, it models entities in B as a graph and resolves edges 

belonging to cliques that may change the query answer. To 

support a selection query, QDA performs vestigiality 

analysis on each block individually to reduce cleaning steps. 

QDA is not designed for the larger class of SPJ queries, 

which is the context of this paper. In contrast, QuERy 

explores a systematic cost-based approach to jointly 

optimize both cleaning and query processing over dirty data. 

It exploits pruning due to both selection and join predicates. 

It only dictates when a block should be cleaned and is 

agnostic to how the block is actually cleaned. Thus, it could 

exploit vestigiality analysis from QDA at the block level to 

reduce the number of entity pairs that are resolved within a 

block. In addition, reference [24] is designed to answer 

aggregate numerical queries over large datasets that cannot 

be fully cleaned. It focuses on cleaning only a sample of 

data and utilizing that sample to provide “approximate” 

answers to aggregate queries. It does not prune cleaning 

steps due to query predicates. However, QuERy deals with 

“exact” answers to SPJ queries based on cleaning only the 

necessary parts of data needed to answer the query. 

Moreover, not only are the two approaches designed for 

different types of queries, their motivation is also very 

different. While [24] is targeting aggregation over very large 

datasets, QuERy targets applications that perform (near) 

real-time analysis over dynamic dirty datasets found on the 

Web. New ER Approaches. Several approaches, e.g., [3, 

26], are considering how to clean the data progressively, 

while interactively analyzing the partially cleaned data to 

compute better results. Moreover, there has been various 

incremental cleaning techniques [12,25]. Such techniques 

address the problem of maintaining an up-to-date ER result 

when data updates arrive quickly. In addition to such 

approaches, the ER research community is exploring other 

novel directions. For example, Data Tamer [23], is an end-

to-end data curation system that entails machine learning 

algorithms with human input to perform schema integration 

and entity resolution. In addition, NADEEF [9] is a general-

purpose data cleaning and repair system that provides 

appropriate programming abstractions for users to specify 

data cleaning transformations. The focus of QuERy is thus, 
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complementary (though different) to that of [23] and [9]. In 

fact, we envision that QuERy could be useful to these 

systems to expand their scope to target (near) real-time 

analysis-aware applications of diverse data sources found on 

the Web. 

 

III. ENTITY RESOLUTION AND QUERIES: 

FORMULATION 

In this section, we formally introduce the entity resolution 

problem and also entity resolution queries, and illustrate 

them using a realistic example — that of resolving authors 

in a citation database such as CiteSeer or PubMed. In the 

simplest formulation of the entity resolution problem, we 

have a collection of references, R = {ri}, with attributes 

{R.A1, . . . , R.Ak}. Let E = {ej} be the unobserved domain 

entities. For any particular reference ri , we denote the entity 

to which it maps as E(ri). We will say that two references ri 

and rj are co-referent if they correspond to the same entity, 

E(ri) = E(rj ). Note that in the case of an unresolved 

database, this mapping E(R) is not provided. Further, the 

domain entities E and even the number of such entities is 

not known. However, in many domains, we may have 

additional information about relationships between the 

references. To model relationships in a generic way, we use 

 
Figure 1: An example set of papers represented as 

references connected by hyper-edges. References are 

represented as ovals shaded according to their entities. Each 

paper is represented as a hyper-edge (shown as a rectangle) 

spanning multiple references. 

a set of hyper-edges H = {hi}. Each hyper-edge connects 

multiple references. To capture this, we associate a set of 

references hi .R with each hyper-edge hi . Note that each 

reference may be associated with zero or more hyper-edges. 

Let us now look at a sample domain to see how it can be 

represented in our framework. Consider a database of 

academic publications similar to DBLP, CiteSeer or 

PubMed. Each publication in the database has a set of 

author names. For every author name, we have a reference ri 

in R. For any reference ri , ri .N ame records the observed 

name of the author in the publication. In addition, we can 

have attributes such as R.Email to record other information 

for each author reference that may be available in the paper. 

Now we come to the relationships for this domain. All the 

author references in any publication are connected to each 

other by a co-author relationship. This can be represented 

using a hyper-edge hi ∈ H for each publication and by 

having rj ∈ hi .R for each reference rj in the publication. If 

publications have additional information such as title, 

keywords, etc, they are represented as attributes of H. 

To illustrate, consider the following four papers, which we 

will use as a running example:  

1. W. Wang, C. Chen, A. Ansari, “A mouse immunity 

model”  

2. W. Wang, A. Ansari, “A better mouse immunity model”  

3. L. Li, C. Chen, W. Wang,“Measuring protein-bound 

fluxetine”  

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary 

cirrhosis” 

To represent them in our notation, we have 10 references 

{r1, . . . , r10} in R, one for each author name, such that 

r1.N ame = ‘W Wang’, etc. We also have 4 hyper-edges 

{h1, . . . , h4} in H, one for each paper. The first hyper-edge 

h1 connects the three references r1, r2 and r3 corresponding 

to the names ‘W. Wang’ , ‘C. Chen’ and ‘A. Ansari’. This is 

represented pictorially in Figure 1. 

Given this representation, the entity resolution task is 

defined as the partitioning or clustering of the references 

according to the underlying entity-reference mapping E(R). 

Two references ri and rj should be assigned to the same 

cluster if and only if they are coreferent, i.e., E(ri) = E(rj ). 

To illustrate, assume that we have six underlying entities for 

our example. This is illustrated in Figure 1 using a different 

shading for each entity. For example, the ‘Wang’s of papers 

1, 2 and 4 are names of the same individual but the ’Wang’ 

from paper 3 is a reference to a different person. Also, the 

‘Chen’s from papers 1 and 3 are different individuals. Then, 

the correct entity resolution for our example database with 

10 references returns 6 entity clusters: {{r1, r4, r9}, {r8}, 

{r2}, {r7}, {r3, r5, r10}, {r6}}. The first two clusters 

correspond to two different people named ‘Wang’, the next 

two to two different people named ‘Chen’, the fifth to 

‘Ansari’ and the last to ‘Li’. 

Any query to a database of references is called an entity 

resolution query if answering it requires knowledge of the 

underlying entity mapping E(R). We consider two different 

types of entity resolution queries. Most commonly, queries 

are specified using a particular value a for an attribute R.A 

of the references that serves as a ‘quasi-identifier’ for the 

underlying entities. Then the answer to the query Q(R.A = 

a) should partition or group all references that have r.A = a 

according to their underlying entities. For references to 

people, the name often serves as a weak or noisy identifier. 

For our example bibliographic domain, we consider queries 

specified using R.N ame. To retrieve all papers written by 

some person named ‘W. Wang’, we issue a query using R.N 

ame and ‘W. Wang’. Since names are ambiguous, treating 

them as identifiers leads to undesirable results. In this case, 

it would be incorrect to return the set {r1, r4, r8} of all 

references with name ‘W Wang’ as the answer to our query. 

This answer does not indicate that r8 is not the same person 

as the other two. Additionally, the answer should include the 
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reference r9 for ‘W W Wang’, that maps to the same entity 

as the author of the first paper. Therefore, the correct answer 

to the entity resolution query on ‘W Wang’ should be the 

partition {{r1, r4, r9}, {r8}}. 

Entity resolution queries may alternatively be specified 

using a specific reference. Imagine a CiteSeer user looking 

at a paper that contains some author name. The user may be 

interested in looking up other papers written by the same 

author, even though they may not know who that author is 

precisely. Then the correct answer to a query on the 

reference r is the group of references that are coreferent to r, 

or, in other words, correspond to the same underlying entity. 

In our example, consider a query specified using the 

reference r1 corresponding to the name ‘W. Wang’ in the 

first paper. Then the correct answer to the query is the set of 

references {r1, r4, r9}. To distinguish it from the first type 

of entity resolution query, note that it does not include the 

cluster {r8} corresponding to the other entity that also has 

name ‘W. Wang’. This second query type may be answered 

by first reducing it to an instance of the first type as Q(R.A 

= r1.A), and then selecting the entity corresponding to 

reference r1. We denote this as σE(R)=E(r1) (Q(R.A = 

r1.A)). In the rest of this paper, we focus only on queries of 

the first type. 

 

IV. COLLECTIVE ENTITY RESOLUTION 

AND RELATIONAL CLUSTERING 

Although entity resolution for queries has not been studied 

in the literature, the general entity resolution problem has 

received a lot of attention. We review related work in detail 

in Section 8. In this section, we briefly review the different 

categories of proposed approaches before discussing how 

they may be adapted for query-time entity resolution. 

In most entity resolution applications, data labeled with the 

underlying entities is hard to acquire. Our focus is on 

unsupervised approaches for resolving entities. 

Traditionally, attributes of individual references, such as 

names, affiliation, etc., for person references, are used for 

comparing references. A similarity measure is generally 

employed over attributes, and only those pairs of references 

that have attribute similarity above a certain threshold are 

considered to be co-referent. This attribute-based entity 

resolution approach (A) often runs into problems. In our 

example, it is hard to infer with just attributes that 

references r1 and r8 are not co-referent although they have 

the same name, while r1 and r9 are co-referent although 

their names are different. 

When relations between references are available, they may 

also be taken into account for computing similarities in the 

naive relational entity resolution approach (NR) 

(Ananthakrishna et al., 2002; Bhattacharya & Getoor, 2007). 

For computing similarities between two references, this 

approach additionally considers the attributes of the related 

references when comparing the attributes of their related 

references. In our example, this approach returns a higher 

similarity between r1 (‘W. Wang’) and r9 (‘W. W. Wang’) 

than the attribute-based approach, since they have co-

authors r3 and r10 with very similar (identical, in this case) 

names. Although this approach can improve performance in 

some cases, it does not always work. For instance, the two 

‘W. Wang’ references r1 and r8 are not co-referent, though 

they both have co-authors with identical names ‘C. Chen’. 

Instead of considering the attribute similarities of the related 

references, the collective entity resolution approach (Pasula 

et al., 2003; Bhattacharya & Getoor, 2004; Singla & 

Domingos, 2004; McCallum & Wellner, 2004; Li, Morie, & 

Roth, 2005; Dong et al., 2005; Kalashnikov et al., 2005) 

takes into account the resolution decisions for them. In our 

previous example, the correct evidence to use for the pair of 

references r1 and r8 is that their co-author references do not 

map to the same entity, although they have similar names. 

Therefore, in order to resolve the ‘W. Wang’ references in 

the collective resolution approach, it is necessary to resolve 

the ‘C. Chen’ references as well, instead of considering the 

similarity of their attributes. The collective entity resolution 

approach has recently been shown to improve entity 

resolution accuracy over the previous approaches but is 

computationally more challenging. The references cannot be 

resolved independently. Instead, any resolution decision is 

affected by other resolutions through hyper-edges. 

In earlier work (Bhattacharya & Getoor, 2004, 2006, 2007), 

we developed a relational clustering algorithm (RC-ER) for 

collective entity resolution using relationships. The goal of 

this approach is to cluster the references according to their 

entities taking the relationships into account. We associate a 

cluster label r.C with each reference to denote its current 

cluster membership. Starting from an initial set of clusters C 

= {ci} of references, the algorithm iteratively merges the 

pair of clusters that are the most similar. To capture the 

collective nature of the cluster assignment, the similarity 

measure between pairs of clusters considers the cluster 

labels of the related references. The similarity of two 

clusters ci and cj is defined as a linear combination of their 

attribute similarity simA and their relational similarity simR: 

 (1) 

where α (0 ≤ α ≤ 1) is the combination weight. The 

interesting aspect of the collective approach is the dynamic 

nature of the relational similarity. The similarity between 

two references depends on the current cluster labels of their 

related references, and therefore changes when related 

references change clusters. In our example, the similarity of 

the two clusters containing references ‘W. Wang’ and ‘W. 

W. Wang’ increases once their co-author references named 

‘A. Ansari’ are assigned to the same cluster. We now briefly 

review how the two components of the similarity measure 

are defined. 

Attribute Similarity: For each reference attribute, we use a 

similarity measure that returns a value between 0 and 1 for 

two attribute values indicating the degree of similarity 

between them. Several sophisticated similarity measures 
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have been developed for names, and popular TF-IDF 

schemes may be used for other textual attributes such as 

keywords. The measure that works best for each attribute 

may be chosen. Finally, a weighted linear combination of 

the similarities over the different attributes yields the 

combined attribute similarity between two reference 

clusters. 

Relational Similarity: Relational similarity between two 

clusters considers the similarity of their ‘cluster 

neighborhoods’. The neighborhood of each cluster is 

defined by the hyper-edges associated with the references in 

that cluster. Recall that each reference r is associated with 

one or more hyper-edges in H. Therefore, the hyper-edge set 

c.H for a cluster c of references is defined as 

   (2) 

This set defines the hyper-edges that connect a cluster c to 

other clusters, and are the ones that relational similarity 

needs to consider. To illustrate, when all the references in 

our running example have been correctly clustered as in 

Figure 1(b), the hyper-edge set for the larger ‘Wang’ cluster 

is {h1, h2, h4}, which are the hyper-edges associated with 

the references r1, r4 and r9 in that cluster. 

Given the hyper-edge set for any cluster c, the neighborhood 

N br(c) of that cluster c is the set of clusters labels of the 

references spanned by these hyper-edges: 

(3) 

For our example ‘Wang’ cluster, its neighborhood consists 

of the ‘Ansari’ cluster and one of the ‘Chen’ clusters, which 

are connected by its edge-set. Then, the relational similarity 

measure between two clusters, considers the similarity of 

their cluster neighborhoods. The neighborhoods are 

essentially sets (or multi-sets) of cluster labels and there are 

many possible ways to define the similarity of two 

neighborhoods (Bhattacharya & Getoor, 2007). The specific 

similarity measure that we use for our experiments in this 

paper is Jaccard similarity1 : 

(4) 

Clustering Algorithm: Given the similarity measure for a 

pair of clusters, a greedy relational clustering algorithm can 

be used for collective entity resolution. Figure 2 shows 

high-level pseudo-code for the complete algorithm. The 

algorithm first identifies the candidate set of potential 

duplicates using a ‘blocking’ approach (Hern´andez & 

Stolfo, 1995; Monge & Elkan, 1997; McCallum, Nigam, & 

Ungar, 2000). Next, it initializes the clusters 

Algorithm RC-ER (Reference set R) 

1. Find similar references in R using blocking 

2. Initialize clusters using bootstrapping 

3. For clusters ci, cj such that similar(ci, cj ) 

4. Insert hsim(ci, cj ), cj , cj i into priority queue 

5. While priority queue not empty 

6. Extract hsim(ci, cj ), ci, cj i from queue 

7. If sim(ci, cj ) less than threshold, then stop 

8. Merge ci and cj to new cluster cij 

9. Remove entries for ci and cj from queue 

10. For each cluster ck such that similar(cij , ck) 

11. Insert hsim(cij , ck), cij , cki into queue 

12. For each cluster cn neighbor of cij 

13. For ck such that similar(ck, cn) 

14. Update sim(ck, cn) in queue 

Figure 2: High-level description of the relational clustering 

algorithm 

of references, identifies the ‘similar’ clusters — or potential 

merge-candidates — for each cluster, inserts all the merge-

candidates into a priority queue and then iterates over the 

following steps. At each step, it identifies the current 

‘closest pair’ of clusters from the candidate set and merges 

them to create a new cluster. It identifies new candidate 

pairs and updates the similarity measures for the ‘related’ 

cluster pairs. This is the key step where evidence flows from 

one resolution decision to other related ones and this 

distinguishes relational clustering from traditional clustering 

approaches. The algorithm terminates when the similarity 

for the closest pair falls below a threshold or when the list of 

potential candidates is exhausted. The algorithm is 

efficiently implemented to run in O(nk log n) time for n 

references where each ‘block’ of similar names is connected 

to k other blocks through the hyper-edges. 

3.1 Issues with Collective Resolution for Queries  

In previous work, we (and others) have shown that 

collective resolution using relationships improves entity 

resolution accuracy significantly for offline cleaning of 

databases. So, naturally, we would like to use the same 

approach for query-time entity resolution as well. However, 

while the attribute-based and naive relational approaches 

discussed earlier can be applied at query-time in a straight-

forward fashion, that is not the case for collective resolution. 

Two issues come up when using collective resolution for 

queries. First, the set of references that influence the 

resolution decisions for a query need to be identified. When 

answering a resolution query for ‘S. Russell’ using the 

attribute-based approach, it is sufficient to consider all 

papers that have ‘S. Russell’ (or, similar names) as author 

name. For collective resolution, in contrast, the co-authors 

of these author names, such as ‘P. 

Norvig’ and ‘Peter Norvig’, also need to be clustered 

according to their entities. This in turn requires clustering 

their co-authors and so on. So the first task is to analyze 

these dependencies for collective resolution and identify the 

references in the database that are relevant for answering a 

query. But this is not enough. The set of references 

influencing a query may be extremely large, but the query 

still needs to be answered quickly even though the answer 

may not be completely accurate. So the second issue is 

performing the resolution task at query-time. These are the 

two problems that we address in the next few sections. 
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V. ADAPTIVE-QUERY SOLUTION 

The previous solution is considered lazy since it tries to 

delay the cleaning of dirty entities as much as possible. 

While such an approach will reduce the cost of cleaning, it 

might increase the cost of processing the query. For 

example, assume that all sketches end up reaching the 

deduplicate operator (viz., the topmost operator in Figure 

11), meaning that their corresponding blocks need to be 

cleaned. In this case, the time spent in trying to filter away 

these blocks is wasted. In fact, cleaning these blocks eagerly 

(without passing their sketches up the tree) might be more 

efficient. To address this issue, we implement a different 

solution which is an adaptive cost-based approach that, 

given a query tree (with polymorphic operators) and dirty 

entity-sets, can devise a good plan to simultaneously clean 

and process the query. The key intuition hinges on placing 

decision nodes as the bottommost nodes in the query tree, as 

presented in Figure 12. The task of such decision nodes is to 

decide if eagerly cleaning some dirty blocks is more 

efficient (in terms of the overall query execution time) than 

delaying their cleansing until the last stage as in the lazy 

solution. The conjecture of placing these nodes at the 

bottom is to allow adaptive QuERy to make the “cleaning a 

block eagerly versus passing it up the tree” decision, from 

the start of query execution time. Note our adaptive solution 

is general, and it does not require such nodes to be placed at 

the bottom. Our adaptive cost-based solution consists of two 

steps. In the first step, we use a sampling technique to 

collect different statistics (e.g., selectivity of predicates, cost 

of join, etc.). In the second step, the decision nodes utilize 

these statistics to make their smart decisions. 

 

VI.CONCLUSIONS 

In this paper, we have studied the problem of analysis aware 

data cleaning. We have developed QuERy, a novel 

architecture for integrating ER with query processing to 

answer complex SQL-like queries issued on top of dirty 

data. We empirically showed how our approach is 

significantly better compared to cleaning the entire dataset, 

especially when the query is very selective. 

We then proposed a two-stage ‘expand and resolve’ strategy 

for answering queries based on this analysis, using two 

novel expansion operators. We showed using our analysis 

that it is sufficient to consider neighbors up to small 

expansion depths, since resolution accuracy for the query 

converges quickly with increasing expansion level. The 

second challenge for answering queries is that the 

computation has to be quick.  
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