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Abstract :This paper investigates the dynamical behavior of a Fractional Order Prey – Predator system in the presence of Allee 

Effect. A discretization process will be applied to obtain its discrete version. The fixed points and the asymptotic stability are 

investigated. Also limit cycles and bifurcation diagram is provided for selected range of growth parameter. We also show that the 

positive fixed point changes from stable to unstable and unstable to stable under the Allee Effect on prey population. 
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I. INTRODUCTION 

Mathematical modeling of interactions between species has drawn the attention of researchers [3],[9]. Population models in 

ecology have been studied using ordinary differential equations, difference equations, partial differential equations, fractional order 

differential equations and stochastic models. Fractional Order Differential Equations (FODE) are suitable to study the systems with 

memory which exists in most biological systems. Stability and dynamical analysis of fractional order LotkaVolterra Models can be 

found in [8], [12]. 

The investigation of the population dynamics with Allee effect has attracted the researchers in recent decades. Allee effect 

describes a positive relation between population density and the per capita growth rate. This effect can be caused by difficulties in, 

for example, mate finding, social dysfunction at small population sizes and predator avoidance of defense. Allee effect, where 

fitness is reduced when conspecific density is low, can dramatically affect the dynamics of species interactions [1], [4], [5], [6].In 

this paper, we study the dynamical behaviors of fractional order LotkaVolterra predator prey system subject to the Allee effect on 

prey population. 

II. ALLEE EFFECT ON PREY POPULATION  

In this paper, we consider the following fractional order prey-predator system subject to an Allee effect on prey population: 

( )
( ) ( )[1 ( )] ( ) ( )
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Here we take
( )

( )

x t

a x t
 as an Allee function and a as an Allee constant. Where 0t  and  is the fractional order satisfying

(0,1]  . Now, applying the discretization process for a fractional-order system described in [2,10], we obtain the discrete 

fractional order Allee effect predator prey system as follows: 
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III. STABILITY OF FIXED POINTS 

The fixed points are    0 1 2

( )
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d rd c d
E E E

c bc ac d
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. We next study the local stability of the fixed points. 

The Jacobian matrix J of model (1) evaluated at any fixed point  * *,x y  is given by 
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Theorem 1.The extinction fixed point 
0E is locally asymptotically stable if 1d  , otherwise unstable fixed point. 

Proof: The Jacobian matrix for the extinction fixed point 
0E is 0

0 0
( )

0
J E

d

 
  

 
.  

Hence the eigenvalues of 
0( )J E are 

1 0  and 
2 d   . Thus 

0E is stable when 1d  . Otherwise 
0E is unstable fixed point. 

Theorem 2.The exclusion fixed point 
1E is locally asymptotically stable if 1r a  and 1d c  , otherwise unstable fixed point. 

Proof: The Jacobian matrix for the exclusion fixed point 
1E is  

1( ) 1

0

r
b

J E a

c d

 
   
 
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. 

The eigenvalues of the matrix 
1( )J E are 1

1

r

a
  


and 

2 c d   . Hence 
1E is locally asymptotically stable when 1r a  and 

1d c  , unstable when 1r a  and 1d c  . 

 We now focus on the positive fixed point
2E , we have the following coefficient matrix:
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where

2* * *
*

* 2

[2 (3 1) 2 ]

( )
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

  
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
. Thus the matrix 

2( )J E yields the characteristic equation 

2
2 ( )

( ) 0
( )

rd c d
P

c ac d
  


   


           (3) 

It follows from the well-known Jury conditions(See for instance [7]) that the modulus of all roots of equation (3) is less than one if 

and only if the conditions (1) 0, ( 1) 0P P   and 
2det ( ) 1J E  holds. 

 Now, we first obtain that (1) 0P  holds if and only if 
2
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Theorem 3.The positive fixed point 
2E of the prey-predator system (1) is locally asymptotically stable if 
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The next result follows from Theorem (3) immediately. 

Corollary 1.The positive fixed point 
2E of model (1) is unstable if 

2
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IV. STABILITY ANALYSIS OF DISCRETIZATION FRACTIONAL ORDER  

 

We will now discuss the dynamics of the discretized fractional order LotkaVolterra predator prey model with Allee effect (2). 

The dynamical behaviors of model (2) is determined by the parameters , , , , ,a b c d r s and  . The Jacobian matrix J of model (2) 

evaluated at any fixed point 
* *( , )x y is given by  
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Theorem 4.If 
2 ( )

0 s
d


 

  , then the fixed point 
0E is locally asymptotically stable. Otherwise unstable fixed point. 

Proof: The Jacobian matrix J evaluated at the fixed point 
0E has the form 0

1 0

( )
0 1
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J E s
d


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Hence, the eigenvalues of the matrix 
0( )J E are 

1 1  and 2 1
( )

s
d




 

 


. Thus 
0E is stable when 

2 ( )
0 s

d


 
  . 

Otherwise 
0E is unstable when 

2 ( )
s

d


 
 . 

Example 1.We consider the parameter values 0.91, 0.09, 0.09, 0.05, 0.36, 1.17s r a b c       and 0.12d  . The fixed point 

0 (0,0)E  and the eigenvalues are 
1 1  and 

2 0.9861  so that 1,2 1  . Hence system (2) is stable. Both prey and predator 

population will go to extinction (See Figure – 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Time series plot and Phase Portrait are Stability at fixed point 
0E . 

Theorem 5.The fixed point 
1E is locally asymptotically stable if 
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Proof: The Jacobian matrix J for the system evaluated at the fixed point 
1E is given by  
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Example2.Choosing the parameter values 0.95, 0.61, 0.61, 0.05, 0.01, 0.21s r a b c       and 0.52d  . The fixed point 

1 (1,0)E  and the eigenvalues are 
1 0.6294  and 

2 0.8022  so that 1,2 1  . We observe the system (2) is stable (SeeFigure-2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Time series plot and Phase Portrait are Stability at fixed point
1E  
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Theorem 6.The positive fixed point 
2E of the prey-predator system (2) is locally asymptotically stable if and only if 
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Proof: The Jacobian matrix J evaluated at the positive fixed point 
2E has the form  
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The trace and determined of the Jacobian matrix 
2( )J E are given by  
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The next result is obtained from Theorem (6) immediately. 

Corollary 2.The positive fixed point 
2E of system (2) is unstable if 
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Example 3.When 0.95, 0.26, 0.26, 0.05, 1.99, 1.44s r a b c       and 0.37d  . The eigenvalues are 1,2 0.9958 0.0693i  

and 
2 (0.2569,0.0812)E  so that 1,2 0.9983 1   . We see that system (2) is stable (See figure -3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Time series plot and Phase Portrait are Stability at fixed point
2E  

 

V. ALLEE EFFECT INSTABILITY OF COEXISTENCE FIXED POINT 

 

We consider the fractional order of prey-predator model without Allee effect  

( ) ( )[1 ( )] ( ) ( )

( ) ( ) ( ) ( )

D x t rx t x t bx t y t

D y t cx t y t dy t





  

 
           (5) 

We obtain the discretization fractional order without Allee effect predator prey system as follows: 
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We illustrate the local stability analysis of discretization fractional order of both Allee effect and without Allee effect in systems 

(2) and (6). In Figure (4) and (5),we show the trajectories of prey and predator densities in the system studied. Figure (4) and (5)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Trajectories of the prey – predator system: the Allee effect stabilize or destabilize system. 

 

presents that when the prey population is subject to an Allee effect, the stability of the positive fixed point change from unstable to 

stable under the Allee constant as 0.05a  . On the other hand, the corresponding fixed point changefrom stable to unstable and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.Trajectories of the prey-predator system: the Allee effect stabilize or destabilize the system. 

 

the trajectory spirals inwards but does not approach a point. Finally the trajectory settles down as a limit cycle. Figure 6 presents the 

bifurcation diagrams of prey and predator densities of the system (2) with initial conditions 0.4x  and 0.3y  as above and the 
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parameter values 0.95, 0.65, 0.05, 1.5, 2.6, 0.9s a b c d       and 2.5: 0.001:5r  . Figure (6) shows the bifurcations of 

prey populations of the system (2), respectively, when the prey population is subject to the Allee effect; however, the other graphs 

correspond to the bifurcations of predator populations in the prey-predator system (2). 

 

Figure   s  r  a  b  c  d  Fixed Point Initial 

4(a),5(a) 0.91 0.58 0.58 0.05 0.61 1.77 0.59 Unstable (0.4,0.3) 

4(b),5(b) 0.91 0.58 0.58 0 0.61 1.77 0.59 Stable (0.4,0.3) 

4(c),5(c) 0.91 0.51 0.51 0.05 1.61 1.77 0.59 Unstable (0.4,0.3) 

4(d),5(d) 0.91 0.51 0.51 0 1.61 2.33 0.59 Stable (0.4,0.3) 

Table 1. Stability Analysis of with Allee and without Allee Effect of the system 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Bifurcation diagrams between prey and predator densities with growth rate in the system (2) respectively. 
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