
© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808057 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 419

A Review and Analysis of Software Complexity Metrics

in Structural Testing
1
Dhanijinder Singh,

2
Upasana Garg,

1
Research Scholar,

2
Asst Proff,

1
Department of Computer Engineering ,

1
Guru Kashi University Talwandi Sabo Bathinda,Punjab India

Abstract : Software metrics is developed and used by the various software organizations for evaluating and assuring software code quality, operation,

and maintenance. Software metrics measure various types of software complexity like size metrics, control flow metrics and data flow metrics. These

software complexities must be continuously calculated, followed, and controlled. One of the main objectives of software metrics is that applies to a

process and product metrics. It is always considered that high degree of complexity in a module is bad in comparison to a low degree of complexity in a

module. Software metrics can be used in different phases of the software development lifecycle. This paper reviews the theory, called “software

complexity metrics”, and analysis has been done based on static analysis. We try to evaluate and analyze different aspects of software metrics in

structural testing which offers of estimating the effort needed for testing. Index Terms—Software metrics, lines of code, control flow metrics, NPATH

complexity, structural testing.

IndexTerms - Component,formatting,style,styling,insert.
__

I. INTRODUCTION

The Software complexity is based on well-known software metrics, this would be likely to reduce the time spent and cost estimation in the

testing phase of the software development life cycle (SDLC), which can only be used after program coding is done. Improving quality of

software is a quantitative measure of the quality of source code. This can be achieved through definition of metrics, values for which can be

calculated by analyzing source code or program is coded. A number of software metrics widely used in the software industry are still not

well understood [1]. Although some software complexity measures were proposed over thirty years ago and some others proposed later.

Sometimes software growth is usually considered in terms of complexity of source code. Various metrics are used, which unable to compare

approaches and results. In addition, it is not possible or equally easy to evaluate for a given source code [2]. Software complexity, deals with

how difficult a program is to comprehend and work with [3]. Software maintainability [3], is the degree to which characteristics that hamper

software maintenance are present and determined by software complexity. There dependencies are shown in Fig. 1. This paper presents an

analysis by which tester/developer can minimize software development cost and improve testing efficacy and quality

II. PROBLEM STATEMENT

From software engineering point of view software development experience shows, that it is difficult to set measurable targets when

developing software products. Produced/developed software has to be testable, reliable and maintainable. On the other side, “you cannot

control what you cannot measure” [4]. In software engineering field during software process, developers do not know if what they are

developing is correct and guidance are needed to help them accustom more improvement. Software metrics are facilitating to track software

enhancement. Various industries dedicated to develop software, and use software metrics in a regular basis. Some of them have produced

their own standards of software measurement, so the use of software metrics is totally depending upon industry to industry. In this regards,

what to measure is classified into two categories, such that software process or software product. But ultimately, main goal of this measure is

customer satisfaction not only at delivery, but through the whole development process.

III. BACKGORUND AND RELATED WORK

A. Software Metrics Software metrics is defined by measuring of some property of a portion of software or its specifications. Software metrics

provide quantitative methods for assessing the software quality. Software metrics can be define as: "The continuous application of

measurement-based techniques to the software development process and its products to supply meaningful and timely management

information (MI) together with the use of those techniques to improve its products and that process" [5].

B. Software Complexity Software complexity, deals with how difficult a program is to comprehend and work with [3]. Software

maintainability [3], is the degree to which characteristics that hamper software maintenance are present and determined by software

complexity. Software complexity is based on well-known software metrics. Various software complexity metrics invented and can be

categorized into two types: 1) Static metrics Static metrics are obtainable at the early phases of software development life cycle (SDLC). These

metrics deals with the structural feature of the software system and easy to gather. Static complexity metrics estimate the amount of effort

needed to develop, and maintain the code. 2) Dynamic metrics Dynamic metrics are accessible at the late stage of the software development

life cycle (SDLC). These metrics capture the dynamic behavior of the system and very hard to obtain and obtained from traces of code.

C. Software Complexity Measures: Attributes Software complexity metrics can be distinguished by the attributes used for measurement. In

this paper, we are concentrating on static measure which can be classified into three types:

 1) Size based metrics Size is one of the most essential attributes of software systems [6]. It controls the expenditure incurred for the systems

both in man-power and budget, for the development and maintenance. These metrics specify the complexity of software by size attributes and

helps in predicting the cost involvement for maintaining the system. Size based metrics measures the actual size of the software module.

Metrics is originated from the basic counts such as line numbers, volume, size, effort, length, etc.

2) Control flow based metrics Control flow based metrics measures the comprehensibility of control structures. These metrics also confine the

relation between the logic structures in program with its program complexity. These metrics are originated from the control structure of a

program [3].

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808057 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 420

 3) Data flow based metrics Data flow based metrics measure the usage of data and their data dependency (visibility of data as well as their

interactions) [3]. Structural testing criteria consider on the knowledge of the internal structure of the program implementation to derive the

testing criteria. Test cases are generated for actual implementation, if there is some change in implementation then it leads to change in test

cases. They can be classified as, complexity, control flow and data flow based criteria. The complexity based criterion requires the execution

of all independent paths of the program; it is based on McCabe’s complexity concept [7]. For the control flow based criteria, testing

requirements are based on the Control Flow Graph (CFG). It requires the execution of components (blocks) of the program under test in

condition of subsequent elements of the CFG i.e. nodes, edges and paths. Another method is number of unit tests needed to test every

combination of paths in a method. In Data Flow based criteria, both data flow and control flow information are used to perform testing

requirements. These coverage criteria are based on code coverage. Code coverage is the degree to which source code of a program has been

tested. Test coverage is measured during test execution. Once such a criterion has been selected, test data must be selected to fulfill the

criterion.

Table 1:Summarized software metrics are shown in.

Type Metrics Description Merit & De-merits

Size Metrics (Program Size) Lines of Code (LOC), Token

Counts (TC), Function Points

(FP), Halstead’s software

science (HSS)

Metrics based on program

size, amount of lines of code,

declarations, statements, and

files. Halstead’s metrics are

based on count of unique

number of operators and

operands in a program

Easy to understand; fast to

count, program language

independent and widely

applicable. No need of deep

analysis of program’s logic

structure. In contrast ignores

the complexity from the

control flow.

Control flow based metrics

(Program Control Structure)

McCabe’s Cyclomatic

Complexity (MCC), Conte’s

Average Nesting Level,

(CANC), NPATH Complexity

(NC)

Metrics based on control

structure of the program or

control flow graph (CFG) and

density of control within the

program Measure acyclic

execution path through a

program.

Ignores the complexity from

the data flow of the program

and Complexity added by the

nesting levels. Do not

distinguish the complexities of

various kinds of control flow.

Data Flow based metrics Chung’s live definition Metrics is based on use of data

within a program

Intra and inter module’s data

dependency complexity

Complexity of software is measuring of software code quality; it requires a model to convert internal quality attributes to code reliability.

High degree of complexity in a component like function, subroutine, object, class etc. is consider bad in comparison to a low degree of

complexity in a component. Software complexity measures which enables the tester to counts the acyclic execution paths through a component

and improve software code quality. In a program characteristic that is one of the responsible factors that affect the developer’s productivity [8]

in program comprehension, maintenance, and testing phase. There are several methods to calculate complexity measures were investigated,

e.g., Nesting Level [6], different version of LOC [8], NPATH [9], McCabe’s cyclomatic number [10], Data quality [10], Halstead’s software

science [11], Function Points[12], Token Counts[11], Chung’s live definition [13] etc.

IV. CLASIFICATION OF SOFTWARE METRICS-

Software metrics are useful to the software process, and product metrics. Various classification of software metrics are as follows:

1) Software Process metrics

2) Software Product metrics

A. Software Process Metrics Software process metrics involves measuring of properties of the development process and also known as

management metrics. These metrics include the cost, effort, reuse, methodology, and advancement metrics. Also determine the size, time and

number of errors found during testing phase of the SDLC. B. Software Product Metrics Software process metrics involves measuring the

properties of the software and also known as quality metrics. These metrics include the reliability, usability, functionality, performance,

efficacy, portability, reusability, cost, size, complexity, and style metrics. These metrics measure the complexity of the software design, size

or documentation created. 1) Size metrics: Lines of code The size of the program indicates the development complexity, which is known as

Lines of Code (LOC). The simplest measure of software complexity recommended by Hatton (1977). This metric is very simple to use and

measure the number of source instruction required to solve a problem. While counting a number of instructions (source), line used for blank

and commenting lines are ignored. The size, complexity of today’s software systems demands the application of effective testing techniques.

Size attributes are used to describe physical magnitude, bulk etc. Lines of code and Halstead’s software science [11] are examples of size

metrics. M. Halstead proposed a metrics called software science. 2) Control flow metrics: NPATH complexity [9] The control flow

complexity metrics are derived from the control structure of a program. The control flow measure by NPATH, invented by Nejmeh [9] it

measures the acyclic execution paths, NPATH is a metric which counts the number of execution path through a functions. NPATH is an

example of control flow metrics. One of the popular software complexity measures NPATH complexity (NC) is determined as:

NPATH= 𝑁𝑃(

𝑖=𝑁

𝑖=1

statementi)

NP(if)=NP(expr)+NP(if-range)+1

NP(if-else)=NP(expr)+NP(if-range)+NP(else-range)

NP(while)=NP(expr)+NP(while-range)+1

NP(do-while)=NP(expr)+NP(do-range)+1

NP(for)=NP(for-range)+NP(expr1)+NP(expr2)+

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808057 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 421

NP(expr3)+1

NP(”?”)=NP(expr1+NP(expr2)+NP(expr3)+2

NP(repeat)=NP(repeat-range)+1

NP(switch)=NP(expr)+ 𝑁𝑃(𝑐𝑎𝑠𝑒 − 𝑟𝑎𝑛𝑔𝑒)

𝑖=𝑛

𝑖=1 +

NP(default-range)

NP(function call)=1

NP(sequential)=1

NP(return)=1

NP(continue)=1

NP(break)=1

NP(goto label)=1

NP(expressions)=Number of && and || operators in

Expression

Execution of Path Expressions (complexity expression) are expressed, where “N” represents the number of statements in the body of

component (function and “NP (Statement)” represents the acyclic execution path complexity of statement i. where “(expr)” represents

expression which is derived from flow-graph representation of the statement. For example NPATH measure as follows:

Void func-if-else (int c)

{ int a=0; if(c) { a=1; }

else { a=2; } }

The Value of NPATH = 2 as follows:

NP (if-else)=NP(expr)+NP(if-range)+NP(else-range)

In the above example, NP (exp)=0 for if statement. NP (If-range)=1 for if statement and , NP(else-range)=1 for if-else statement. So, NP (if-

else)=0+1+1=2. NPATH, metric of software complexity overcomes the shortfalls of McCabe’s metric which fail to differentiate between

various kinds of control flow and nesting levels control structures. 3) Mc cabb’e cyclomatic complexity [10] Cyclomatic Number is one of

the metric based on not program size but more on information/control flow. It is based on specification flow graph representation developed

by Thomas J Mc Cabb in 1976. Program graph is used to depict control flow. Nodes are representing processing task (one or more code

statement) and edges represent control flow between nodes. McCabe’s metrics [7] is example of control flow metrics. To compute

Cyclomatic Number by V (G) as following methods:

V (G)=E – N + 2P

 where, V (G)= Cyclomatic Complexity E= the number of edges in a graph N= the number of nodes in graph P= the number of connected

components in graph, We can compute the number of binary node (predicate), by the following equation.

 V (G)= p+1

where, V(G)= Cyclomatic Complexity P= number of nodes or predicates The problem with McCabb’s Complexity is that, it fails to

distinguish between different conditional statements (control flow structures). Also does not consider nesting level of various control flow

structures. NPATH, have advantages over the McCabb’s metric [12].

4) Halstead software science complexity M. Halstead’s [11] introduced software science measures

for software complexity product metrics. Halseatd’s software

science is based on a enhancement of measuring program size

by counting lines of code. Halstead’s metrics measure the

number of number of operators and the number of operands

and their respective occurrence in the program (code). These

operators and operands are to be considered during

calculation of Program Length, Vocabulary, Volume,

Potential Volume, Estimated Program Length, Difficulty,

and Effort and time by using following formulae.

n1 = number of unique operators,

n2 = number of unique operands,

N1 = total number of operators, and

N2 = total number of operands,

a) Program Length (N) = N1+N2

b) Program Vocabulary (n) = n1+n2

c) Volume of a Program (V) = N*log2n

d) Potential Volume of a Program (V*)=(2+n2)log2(2+n2)

e) Program Level (L) = L=V*/V

f) Program Difficulty (D) = 1/L

g) Estimated Program Length (N) = n1log2n1+n2log2n2

h) Estimated Program Level (L) = 2n2/(n1N2)

i) Estimated Difficulty (D) = 1/L = n1N2/2n2

j) Effort (E) = V/L = V*D = (n1 x N2) / 2n2

k) Time (T) = E/S [“S” is Stroud number (given by John

Stroud), the constant “S” represents the speed of a

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808057 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 422

programmer. The value “S” is 18]

One major weakness of this complexity is that they do not

measure control flow complexity and difficult to compute

during fast and easy computation.

V. STATIC ANANYSIS

Our analysis is based on static analysis of software complexity metrics like size and control flow metrics. We have considered four program

characteristics from the literature that are responsible for complexity measures. e.g., LOC, NC, MCC, and HSSC. For this study, we have

selected only program written in C language given in Fig. 2. We have measured LOC, NPATH i.e. acyclic execution paths through

components for in an attempt at program optimization, McCabe complexity and finally Halstead’s software science complexity metrics.

Statics analysis of metrics is not directly associated to the execution of programs (source code). There are three aspects can be affect

maintenance of program, like program volume/size, data organization, and control structure. While counting a number of instructions

(source), line used for blank and commenting lines are ignored. NPATH measures the acyclic execution paths which counts the number

of execution path through a functions. Halstead’s metrics measure the number of number of operators and the number of operands and

their respective occurrence in the program (code). These operators and operands are to be considered during calculation of Program

Length, Vocabulary, Volume, Potential Volume, Estimated Program Length, Difficulty, and Effort and time. For McCabb’s complexity

measures program graph is used to depict control flow. Nodes are representing processing task (one or more code statement) and edges

represent control flow between nodes TABLE II: CALCULATION OF THE COMPLEXITY MEASURES FROM

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808057 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 423

 Consider an example, Let P be the source program in C given below: Consider a program from fig. 2, the complexity measured by us and

computed the complexity of the other proposed measures i.e Lines of Code (LOC), NPATH Complexity (NC), McCabb’s complexity

(MCC) and Halstead’s software science complexity (HSSC) are shown in Table II. Fig. 2. Source program.

VI. CONCLUSION

Software complexity metrics have a tendency to be used in judging the quality of software development and one of the vital parts of the

SDLC. The volume, control and data based complexity are importance of today’s software systems demand the application of effective testing

techniques. In addition, it was observed that software complexity metrics which enables the tester to counts the acyclic execution through a

program and improve software quality. This static analysis could be lead to reduce software development cost and improve testing efficacy and

software quality by evaluating software complexity metrics with LOC, NPATH (NC), McCabb’s complexity metrics (MCC) and Halstead’s

Software Science Complexity (HSSC).

.

REFERENCES

[1] T. J. M. Cabe, “A complexity measure,” IEEET Ransactions on Software Engineering, vol. 2, 1976

[2] I. Herraiz, J. M. G. Barahona, and G. Robles, “Towards a theoretical model for software growth,” in 29th International Conference on

Software Engineering Workshops (ICSEW'07).

[3] W. Harrison, K. Magel, R. Kluczny, and A. Dekok, Applying Software Complexity Metrics to Program Maintenance Compute, vol. 15,

pp. 65-79, 1982.

[4] T. D. Marco, “Controlling software projects,” Prrntice Hall, New York, 1982.

[5] J. Verner and G. Tate, “A software size model,” IEEE Transaction on Software Engineering, vol. 18, no. 4, 1992.

[6] W. Harrision and L. I. Magel, “A complexity based on nesting level,” Sigplan Notice, vol. 16, no. 3, 1981.

[7] A. Fitzsimmons and T. Love, “A review and evaluation of software science,” Computing Survey, vol. 10, no. 1, March 1978.

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808057 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 424

[8] S. D. Conte, H. E Dunsmore, and V. Y. Shen, “Software engineering metrics and models,” Benjamin/Cummings Publishing Company,

Inc., 1986.

[9] B. A. Nejmeh, “NPATH: A measure of execution path complexity and its applications,” Comm. of the ACM, vol. 31, no. 2, pp. 188-210,

February 1988.

[10] T. A. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering, vol. 2, no. 4, pp. 308-320, December 1976.

[11] M. Halstead, Elements of Software Science. North Holland, 1977.

[12] E. E. Millis, “Software metrics,” SEI Curriculam Module SEI- CM. vol. 12, no. 2.1, Dec, 1988.

[13] C. M Chung and M. G Yang, “A software maintainability measurement,” Proceedings of the 1988 Science, Engineering and

Tech. Houston, Texas, pp. V12-16.

http://www.jetir.org/

