qs I- CONNECTEDNESS IN IDEAL BITOPOLOGICAL SPACES

¹Dr. Mandira Kar, ²Prof. S. S. Thakur,

¹Assosciate Prof. & Head, ²Principal, Jabalpur Engineering College ¹Dept. of Mathematics, ¹St. Aloysius College (Auto), Jabalpur, India

Abstract: The purpose of this paper is to introduce and study the notion of qs I connectedness in ideal bitopological spaces. We shall also study the notions of qs I separated sets in ideal bitopological spaces. Keywords: Ideal bitopological spaces, qs I connected, qs I separated sets, qs I s-connected. AMS Mathematics Subject Classification: 54A10, 54A05, 54A20, 54C08

I. INTRODUCTION AND PRELIMINARIES

In 1961 Kelly introduced the concept of bitopological spaces as an extension of topological spaces [8]. A bitopological space (X, τ_1 , τ_2) is a nonempty set X equipped with two topologies τ_1 and τ_2 [8]. The study of quasi open sets in bitopological spaces was initiated by Datta in 1971 [1]. In a bitopological space (X, τ_1 , τ_2) a set A of X is said to be quasi open if it is a union of a τ_1 -open set and a τ_2 -open set [1]. Complement of a quasi open set is termed quasi closed. Every τ_1 -open (resp. τ_2 -open) set is quasi open but the converse may not be true. Any union of quasi open sets of X is quasi open in X. The intersection of all quasi closed sets which contains A is called quasi closure of A. It is denoted by qCl(A) [1]. The union of quasi open subsets of A is called quasi interior of A. It is denoted by qInt(A) [1].

In 1963 Levine [11] introduced the concept of semi open sets in topology. A subset A of a topological space (X, τ) is called semi open if there exists an open set O in X such that $O \subset A \subset Cl(O)$. Every open set is semi open but the converse may not be true. In 1986 Maheshwari, Chae and Thakur [10] generalized this concept by introducing quasi semi- open sets in bitopological spaces. A set A in a bitopological space (X, τ_1, τ_2) is called quasi semi open if it is a union of a τ_1 - semi open set and a τ_2 - semi open set [10]. Every quasi open (τ_1 - semi open, τ_2 - semi open) set is quasi semi open but the converse may not be true. A set is said to be quasi semi closed if its complement is quasi semi open. Any union of quasi semi open sets of X is quasi semi open in X. The union of quasi semi open subsets of A is called quasi semi interior of A. The intersection of all quasi A set is set which contains A is called quasi semi closure of A. Quasi semi interior and quasi semi closure of A are respectively denoted as qsInt(A) and qsCl(A) [10].

The study of ideal topological spaces was initiated by Vaidyanathaswamy [13] in 1945 and later studied by Kuratowski in 1966 [9]. Applications to various fields were further investigated by Dontchev [2], Jankovic and Hamlett [5] and others.

An Ideal I on a topological space (X, τ) is a non empty collection of subsets of X which satisfies:

- i. A $\in I$ and B \subset A \Rightarrow B $\in I$ and
- ii. A ϵ I and B ϵ I \Rightarrow A \cup B ϵ I

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I) . If (X) is the set of all subsets of X, in a topological space (X, τ) a set operator $(.)^* \colon \mathcal{P}(X) \to \mathcal{P}(X)$ is called the local mapping [2] of A with respect to τ and I and is defined as follows: $A^*(\tau, I) = \{x \in X \mid U \cap A \notin I, \forall U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau \mid x \in U\}$.

Definition 1.1. [6]. If (X, τ_1, τ_2) is a bitopological space then (X, τ_1, τ_2, I) is an ideal bitopological space if I is an ideal on X.

In 2010, Jafari and Rajesh defined quasi local mapping of A with respect to τ_1 , τ_2 and I and defined it as follows $A_q^*(\tau_1, \tau_2, I) = \{x \in X | U \cap A \notin I, \forall \text{ quasi open set U containing } x\}$ [4].

Definition 1.2. [12]. Given an ideal bitopological space (X, τ_1, τ_2, I) the quasi semi-local mapping of A with respect to τ_1, τ_2 and I denoted by $A_{qs}^*(\tau_1, \tau_2, I)$ (more generally as A_{qs}^*) is defined as $A_{qs}^*(\tau_1, \tau_2, I) = \{x \in X | U \cap A \notin I, \forall \text{ quasi semi-open set U containing } x\}$.

Definition 1.3. [12]. A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is qs *I*- open if $A \subset qsInt(A_{qs}^*)$ and qs *I*- closed if its complement is qs *I*- open.

Definition 1.4. [12]. A mapping f: $(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ is called a qs*I*- continuous if f⁻¹(V) is a qs*I*- open set in X for every quasi open set V of Y.

Definition 1.5. [12]. In an ideal bitopological space (X, τ_1, τ_2, I) the quasi * -semi closure of A of X denoted by qsCl^{*}(A) is defined by qsCl^{*}(A) = A \cup A^{*}_{qs}

Definition 1.6. [12]. A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is said to be a qs *I*- neighbourhood of a point $x \in X$ if \exists a qs *I*- open set O such that $x \in O \subset A$

Definition 1.7. [12]. Let A be a subset of an ideal bitopological space (X, τ_1, τ_2, I) and $x \in X$. Then x is called a qs*I*-interior point of A if $\exists V a qsI$ - open set in X such that $x \in V \subset A$. The set of all qs*I*- interior points of A is called the qs*I*- interior of A and is denoted by qs*I*Int(A).

Definition 1.8. [12]. Let A be a subset of an ideal bitopological space (X, τ_1, τ_2, I) and $x \in X$. Then x is called a qs*I*-cluster point of A, if $V \cap A \neq \emptyset$, for every qs*I*- open set V in X. The set of all qs*I*-cluster points of A denoted by qs*I*Cl(A) is called the qs*I*-closure of A.

Definition 1.9. [3]. An ideal topological space (X, τ, I) is called *-connected if X cannot be written as the disjoint union of a nonempty open set and a nonempty *-open set.

Definition 1.10. [7]. An ideal bitopological space (X, τ_1 , τ_2 , I) is called pairwise *-connected if X cannot be written as the disjoint union of a nonempty τ_i open set and a nonempty τ_i^* -open set. {i, j = 1, 2; i \neq j}

Definition 1.11. [7]. Nonempty subsets A, B of an ideal bitopological space (X, τ_1 , τ_2 , I), are called pairwise *-separated if $\tau_i Cl^*(A) \cap B = A \cap \tau_j Cl(B) = \phi$. {i, j = 1, 2; i \neq j}

II. qs I- CONNECTEDNESS IN IDEAL BITOPOLOGICAL SPACES

Definition 2.1. An ideal topological space (X, τ_1, τ_2, I) is called qs*I*- connected if X cannot be written as the disjoint union of a nonempty quasi open set and a nonempty qs*I*- open set.

Definition 2.2. Nonempty subset A, B of an ideal bitopological space (X, τ_1, τ_2, I) are called qs I-separated if qCl(A) \cap B = A \cap qs ICl(B) = ϕ .

Theorem 2.1. If A, B are -separated sets of an ideal bitopological space (X, τ_1, τ_2, I) and $A \cup B \in \tau_1 \cap \tau_2$ then A is qs *I*- open and B is quasi open.

Proof: Since A and B are qs*I*-separated in X, then $B = (A \cup B) \cap (X - qCl(A))$. Since $A \cup B$ is biopen and qCl(A) is quasi closed in X, B is quasi open in X. Similarly $A = (A \cup B) \cap (X - qsICl(B))$ and we obtain that A is qs*I*-open in X.

Theorem 2.2. Let (X, τ_1, τ_2, I) be an ideal bitopological space and A, B \subset Y \subset X. Then A and B are qs*I*-separated in Y if and only if A, B are qs*I*-separated in X.

Proof: It follows from $qCl(A) \cap B = A \cap qs ICl(B) = \phi$ and the fact that A, $B \subset Y \subset X$.

Theorem 2.3. If f: $(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ is a qs*I*- continuous onto mapping. Then if $(X, \sigma_1, \sigma_2, I)$ is a qs*I*-connected ideal bitopological space (Y, σ_1, σ_2) is also quasi connected.

Proof: It is known that connectedness is preserved by continuous surjections. Hence every qsI-open set is also quasi open. Hence, qsI- connected space is also quasi connected.

Definition 2.3. A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is called qs*I*-s-connected if A is not the union of two nonempty qs*I*-separated sets in (X, τ_1, τ_2, I) .

Theorem 2.4. Let Y be a biopen subset of an ideal bitopological space (X, τ_1, τ_2, I) . The following are equivalent:

i. Y is qs *I*-s-connected in (X, τ_1, τ_2, I)

ii. Y is qs *I*- connected in (X, τ_1, τ_2, I) .

Proof: i) \Rightarrow ii) Let Y be qs*I*-s-connected in (X, τ_1 , τ_2 , *I*) and suppose that Y is not qs*I*-connected in (X, τ_1 , τ_2 , *I*). There exist non empty disjoint quasi open set A, in Y and qs*I*- open set B in Y s.t Y = A \cup B. Since Y is biopen in X and A and B are quasi open and qs*I*- open in X respectively and A and B are disjoint, then qCl(A) \cap B = \emptyset = A \cap qs*I*Cl(B). This implies that A, B are qs*I*-separated sets in X. Thus, Y is not qs*I*-s-connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). Hence we arrive at a contradiction and Y is qs*I*- connected in (X, τ_1 , τ_2 , *I*). A and B are qs*I*-separated sets A, B s.t Y = A \cup B. By Theorem 2.1, A and B are qs*I*-open and quasi open in Y respectively. Since Y is biopen in X, obviously A and B are qs*I*- open and quasi open in X respectively. Also Y is qs*I*-connected so Y cannot be written as the disjoint union of a nonempty quasi open set and a nonempty qs*I*- open set. This is a contradiction and Y is qs*I*-s-connected.

Theorem 2.5. Let (X, τ_1, τ_2, I) be an ideal bitopological space. If A is a qs*I*-s-connected set of X and H, G are qs*I*-separated sets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Proof: Let $A \subset H \cup G$. Since $A = (A \cap H) \cup (A \cap G)$, then $(A \cap G) \cap qCl(A \cap H) \subset G \cap qsICl(H) = \emptyset$. By similar reasoning, we have $(A \cap H) \cap qCl(A \cap G) \subset H \cap qsICl(G) = \emptyset$. If $A \cap H$ and $A \cap G$ are nonempty, then A is not qsI-s-connected. This is a contradiction. Thus, either $A \cap H = \emptyset$ or $A \cap G = \emptyset$ This implies that either $A \subset H$ or $A \subset G$.

Theorem 2.6. If A is a qs*I*-s-connected set of an ideal bitopological space (X, τ_1 , τ_2 , *I*) and A \subset B \subset qCl (A) \cap qs*I*Cl(B) then B is qs*I*-s-connected.

Proof: The theorem can easily be proved by taking the contradiction.

Theorem 2.7. If $\{M_i: i \in I\}$ is a nonempty family of qs *I*-s-connected sets of an ideal bitopological space (X, τ_1, τ_2, I) with $\bigcap_{i \in I} M_i \neq \phi$ Then $\bigcup_{i \in I} M_i$ is qs *I*-s-connected.

Proof: Suppose that $\bigcup_{i \in I} Mi$ is not qs*I*-s-connected. Then we have $\bigcup_{i \in I} Mi = H \cup G$, where H and G are qs*I*-separated sets in X. Since $\bigcap_{i \in I} Mi \neq \phi$ we have a point x in $\bigcap_{i \in I} Mi$. Since $x \in \bigcup_{i \in I} Mi$, either x ε H or x ε G. Suppose that x ε H. Since x ε M_i for each i ε I, then M_i and H intersect for each i ε I. By theorem 2.5: $M_i \subset H$ or $M_i \subset G$. Since H and G are disjoint, $M_i \subset H$ for all i ε I and hence $\bigcup_{i \in I} Mi \subset H$. This implies that G is empty. This is a contradiction. Suppose that x ε G. By similar way, we have that H is empty which is a contradiction. Thus, $\bigcup_{i \in I} Mi$ is qs*I*-s-connected.

Theorem 2.8. Suppose that $\{M_n: n \in N\}$ is an infinite sequence of qs*I*-connected open sets of an ideal space (X, τ_1, τ_2, I) and $M_n \cap M_{n+1 \neq \phi}$ for each $n \in N$. Then $\bigcup_{i \in I} M_i$ is qs*I*-s-connected.

Proof: By induction and Theorems 2.4 and 2.7, the set $P_n = \bigcup_{k \le n} Mk$ is a qs*I*-connected open set for each n ε N. Also, P_n has a nonempty intersection. Thus $\bigcup_{n \in \mathbb{N}} Mn$ is qs*I*-connected.

Definition 2.4. Let X be an ideal bitopological space (X, τ_1, τ_2, I) and $x \in X$. The union of all qs*I*-s-connected subsets of X containing x is called the qs*I*-component of X containing x.

Theorem 2.9. Each qs *I*-component of an ideal bitopological space (X, τ_1, τ_2, I) is a maximal qs *I*-s connected set of X.

Proof: Obvious.

Theorem 2.10. The set of all distinct qs *I*-components of an ideal bitopological space (X, τ_1, τ_2, I) forms a partition of X.

Proof: Let A and B be two distinct qs*I*-components of an ideal bitopological space (X, τ_1, τ_2, I) containing x and y respectively $\{x \neq y\}$. Suppose that A and B intersect. Then, by Theorem 2.7, $A \cup B$ is qs*I*-s-connected in X. Also, A, $B \subseteq A \cup B$, so A, B are not maximal and thus A, B are disjoint. Hence they partition X. by induction it can easily be proved that the set of all distinct qs*I*-components of X forms a partition of X.

Theorem 2.11. Each qs *I*- component of an ideal bitopological space (X, τ_1 , τ_2 , *I*) is qs *I*-closed in X.

Proof: Let A be a qs*I*-component of X. Therefore qsCl(A) is qs*I*-s-connected and A = qsCl(A). Thus, A is qs*I*-closed in X.

REFERENCES

[1] Datta, M.C. 1971. Contributions to the theory of bitopological spaces. Ph.D. Thesis, B.I.T.S. Pilani, India.

[2] Dontchev, J., Ganster, M. and Rose, D. 1999. Ideal resolvability. Topology and its Application, 93: 1-16.

[3] Ekici, E. and Noiri, T. 2008. Connectedness in ideal topological spaces. Novi Sad J. Math., 38(2): 65-70.

- [4] Jafari, S. and Rajesh, N. 2010. On q*I* open sets in ideal bitopological spaces. University of Bacau, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, 20(2): 29-38.
- [5] Jankovic, D. and Hamlett, T.R. 1992. Compatible extensions of ideals. Boll. Un. Mat. tal., 7(6-B): 453-465.
- [6] Kar, M. and Thakur, S.S. 2012. Pair wise open sets in ideal bitopological spaces. Int. Jr. of Mathematical Sciences & Applications, 2(2): 839-842.

- [7] Kar, M. and Thakur, S.S. 2014. Connectedness in ideal bitopological spaces. Int. Journal of Engineering Research and Applications, 4(1)-1: 165-167.
- [8] Kelly, J.C. 1963. Bitopological spaces. Proc. London Math. Soc., 13: 71-89.
- [9] Kuratowski, K. 1966. Topology- Vol. I, New York Academic Press.
- [10] Maheshwari, S.N., Chae, G.I. and Thakur S.S. 1986. Quasi semi open sets. UOU Report 17(1): 133-135.
- [11] Levine, N. 1963. Semi open sets and semi continuity in topological spaces. Amer. Math. Monthly, 70: 36 41.
- [12] Thakur, S.S. and Kar, M. Jan-June 2012. Quasi semi local functions in ideal bitopological spaces. American Journal of Mathematical Sciences, 1(1): 31–36.
- [13] Vaidyanathaswamy, R. 1945. The localisation theory in set topology. Proc. Indian Acad. Sci. 20: 51-61.

