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Abstract— In this paper, we endeavor to design an accommodation mechanism for profit optimizations of both a 

cloud provider and its multiple users. We consider the quandary from a game theoretic perspective and characterize 

the relationship between the cloud provider and its multiple users as a Stackelberg game, in which the strategies of all 

users are subject to that of the cloud provider. The cloud provider endeavors to cull and provision opportune servers 

and configure an opportune request allocation strategy to reduce energy cost while satiating its cloud users 

concurrently. We approximate its server’s cull space by integrating a controlling parameter and configure an optimal 

request allocation strategy. For each utilizer, we design a utility function which amalgamates the net profit with time 

efficiency and endeavor to maximize its value under the strategy of the cloud provider. We formulate the competitions 

among all users as a generalized Nash equilibrium quandary (GNEP). We solve the quandary by employing 

variational inequality (VI) theory and prove that there subsists a generalized Nash equilibrium solution set for the 

formulated GNEP. Conclusively, we propose an iterative algorithm (IA), which characterizes the whole process of our 

proposed accommodation mechanism. We conduct some numerical calculations to verify our theoretical analyses. The 

experimental results show that our IA algorithm can benefit both of a cloud provider and its multiple users by 

configuring opportune strategies. 

 

Index Terms—Cloud computing, Generalized Nash equilibrium, Non-cooperative game theory, Profit 

optimization, Resource allocation, Variational inequality theory. 

I INTRODUCTION 

C Loud computing is an increasingly popular 

paradigm of offering subscription-oriented 

accommodations to enterprises and consumers [1]. 

Conventionally, the provided accommodations refer to 

Infrastructure as a Accommodation (IaaS), Platform as 

a Accommodation (PaaS), and Software as a 

Accommodation (SaaS), which are all made available 

to the general public in a pay-as-you-go manner [2], 

[3]. To fortify sundry accommodations, more and 

more cloud centers are equipped with thousands of 

computing nodes, which results in tremendous energy 

cost [4]. It is reported that about 50% management 

budget of Amazon′ s data center is utilized for 

powering and colling the physical servers [5]. There 

are withal researchers who have studied the cost of 

data centers and concluded that around 40% of the 

amortized cost of a data center falls into power 

cognate categories [6]. Hence, it is consequential to 

reduce energy cost for amending the profit of a cloud 

provider. However, it can often be visually perceived 

that there are many under-utilized servers in cloud 

centers, or on the contrary, cloud providers provide 

less processing capacity and thus dissatisfy their users 

for poor accommodation quality. Consequently, it is 

paramount for a cloud provider to cull felicitous 

servers to provide accommodations, such that it 

reduces cost as much as possible while satiating its 

users concurrently. 

For a cloud provider, the income (i.e., the 

revenue) is the accommodation charge to the 

aggregated requests from all cloud users [7]. When the 

per request charge is tenacious, servers cull and 

request allocation strategy are two consequential 

factors that should be taken into account. The reason 

behind lies in that both of them are not just for the 

profit of a cloud provider, but for the appeals to more 

cloud users in the market to utilize cloud 

accommodation and thus withal impact the profit. 

Concretely, if the provided computing capacity is 
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immensely colossal enough (i.e., many servers are 

under-utilized), this will result in tremendous amount 

of energy waste with immensely colossal cost and thus 

reduces the profit of the cloud provider. On the other 

hand, if the cloud provider provides less computing 

capacity or infelicitously configures the request 

allocation strategy, this will lead to low 

accommodation quality (e.g, long task replication 

time) and thus dissatisfies its cloud users or potential 

cloud users in the market. 

The rest of the paper is organized as follows. 

Section II describes the models of the system and 

presents the quandary to be solved. Section III 

formulates the quandary into a Stackelberg game, 

which consists of a bellwether and a set of adherents. 

We analyze the strategies for both of the bellwether 

and the adherents. Many analyses and several sub 

algorithms are presented in this section. Section IV is 

developed to verify our theoretical analysis and show 

the efficacy of our proposed algorithm. We conclude 

the paper with future work in Section V. 

 

II SYSTEM MODEL AND PROBLEM 

FORMULATION 

In this section, we first present our system 

models and then formulate the profit optimization 

problem. We consider the context of a cloud provider 

with multiple cloud users. The cloud provider is 

assumed to be equipped with m heterogeneous 

multicore servers. We denote the set of servers as M = 

{1, 2, m}. Each server j (j ∈ M) consists of cj cores 

and similar to [9], it is modeled by an M/M/c queueing 

system. We denote the set of cloud users as N = {1, 2 . 

. . n}. The requests from each of the cloud users are 

assumed to follow a Poisson process. 

We summarize all the notations used in this section in 

the notation table (see Section 1 of the supplementary 

material). 

A. Architecture Model 

In this subsection, we model the architecture 

of our proposed service mechanism, in which the 

cloud provider can select an appropriate servers subset 

S from M (i.e., S ⊆ M) to provide services for the H 

future time slots, and configure a proper strategy pS = 

( p 1 S , . . . , p H S ) with p h S = ( p h j ) j∈S (h ∈ H) 

to allocate the aggregated requests to the selected 

servers, such that the average response time over all 

cloud users (see Eq. (14)) is minimized, while its 

multiple users can make an appropriate request 

decision according to the selected servers and 

allocation strategy. As shown in Fig. 1, each user i (i ∈ 

N ) is equipped with a utility function (Ui) and a 

request configuration strategy (λi), i.e., the request 

strategy over H future time slots. All requests enter a 

queue to be processed by the cloud center. Let λΣ be 

the aggregated request vector, then we have λΣ = ∑ 

i∈N λi . The cloud provider tries to select an 

appropriate servers subset S, configure an appropriate 

allocation strategy pS , and publishes some 

information (e.g., per request charge r, server subset S, 

and the corresponding allocation strategy pS , current 

aggregated requests λΣ) on the information exchange 

model. When multiple users try to configure 

appropriate request strategies, they first get 

information from the exchange module, then compute 

proper request strategies such that their own utilities 

are maximized and send the newly strategies to the 

cloud provider. That is to say, each user has two steps 

to make cloud service reservation. Firstly, before 

20:00, the users who want to use the cloud service 

register their informations. Secondly, the cloud 

provider collects the informations of its registered 

users and ensures the agreements at 20:00. If a user 

registers after 20:00, then he/she tries to make the next 

negotiation, i.e., waits for the next round. 

 

B Energy Cost Model 

We consider energy consumption model in the context 

of our proposed heterogeneous multicore server 

system. Energy consumption and circuit delay in 

complementary metal-oxide semiconductor (CMOS) 

can be accurately modeled by simple equations, even 

for complex microprocessor circuits [9]. The energy 

consumption of a CMOS-based processor is defined as 

the summation of capacitive, short-circuit, and leakage 
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energy [32]. However, the dominant component in a 

well-designed circuit is capacitive energy E, which is 

approximately defined as 

 

where d is the number of switches per clock 

cycle, C is the total capacitance load, V is the supply 

voltage, and f is the frequency. The processing 

capacity of a processor µ is usually linearly 

proportional to the clock frequency, i.e., µ ∝ f. With 

reference to [9], [33], we also obtain f ∝ V ϕ with 0 < 

ϕ ≤ 1, which implies that V ∝ f 1/ϕ . Therefore, we 

know that the energy consumption is E ∝ f a and E ∝ 

µ a , where a = 1 + 2/ϕ ≥ 3. In this paper, we assume 

that 

 

where ξ is a corresponding factor. Denote χ as the cost 

of one unit of energy and let Ej be the energy 

consumption of server j (j ∈ M) in a unit of time. 

According to equation (2), we obtain 

 

where µj is the processing rate of one core of server j, 

ξj and aj are the corresponding energy consumption 

factors. 

C Request Profile Model 

We consider a user request model similar to [34], [35], 

where the user i ′ s (i ∈ N ) request profile over the H 

future time slots is formulated as 

 

where λ h i (h ∈ H) is the arrival rate of requests from 

user i in the hth time slot and it is subject to the 

constraint 0 ≤ λ h i ≤ Λi , where Λi denotes user i ′ s 

maximal requests in a time slot. The requests from 

each of the users in different time slots are assumed to 

follow a Poisson process. The individual strategy set 

of user i can be expressed as 

 

where H = {1, . . . , H} is the set of all H future time 

slots. 

D Cloud Service Model 

The cloud provider is equipped with a request 

scheduler and m heterogeneous multicore servers. 

Each server j (j ∈ M) consists of cj cores and similar to 

[9], it is modeled by an M/M/c queuing system. We 

assume that all of the servers differ in their processing 

capacities and energy consumptions. The processing 

capacity of one core of server j (j ∈ M) is presented by 

its service rate µj . Energy consumption factors ξj and 

aj are also different among different servers. The cloud 

provider only selects a servers subset S (S ⊆ M) to 

provide services. 

Let p h j be the probability that each of the 

requests is assigned to server j (j ∈ S) in time slot h (h 

∈ H) and ρ h j be the corresponding service utilization. 

Then we have where λ h Σ 

denotes the aggregated requests from all cloud users in 

time slot h, i.e., λ h Σ = ∑n i=1 λ h i . Let π h k,j be the 

probability that there are k service requests (waiting or 

being proceed) at server j in time slot h. With 

reference to [9], we have 

 

 

The probability of queuing (i.e., the probability that a 

newly submitted request must wait due to all cores of 

server j are busy) is 

 

The average number of service requests in time slot h 

(in waiting or in execution) at server j is 
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Applying Little′ s result, we obtain the average 

response time at server j as 

 

where P h q,j represents the probability that the 

incoming requests at server j need to wait in queue in 

time slot h. In this paper, we assume that all of the 

selected servers will likely keep busy, because if not 

so, some servers could be removed to reduce 

mechanical wear and energy cost. Therefore, P h q,j 

(∀j ∈ S) is assumed to be 1, and we have 

 

With a request rate of λ h i (i ∈ N ) in time slot h (h ∈ 

H), the average response time of user i on server j (j ∈ 

S) is given by 

 

We derive the mean response time of user i (i ∈ N ) 

over all servers as 

 

and the average response time over all users as 

 

D  Problem Formulation 

Now, let us consider user i ′ s (i ∈ N ) utility in 

time slot h. A rational cloud user will seek a strategy 

to maximize its expected net reward by finishing the 

tasks, i.e., the benefit obtained by choosing the cloud 

service minus its total payment. Hence, in this paper, 

we assume that the deteriorating rate of time utility is δ 

(δ > 1). Denote the Tˆh i as the time utility of user i in 

time slot h. Then we have Tˆh i = δ hT¯h i . More 

formally, the utility of user i (i ∈ N ) in time slot h is 

defined as 

 

where   denotes the 

vector of all users′ request profile in time slot h except 

that of user i, and wi (wi > 0) is a weight factor, which 

reflects the importance of net benefit compared with 

time utility. 

Note that, when the average response time is low, the 

users may submit more requests and thus impact the 

aggregated requests in cloud center. 

We obtain the total utility obtained by user i (i ∈ N ) 

over all H future time slots as 

 

where λ−i = (λ1, . . . , λi−1, λi+1, . . . , λn) denotes the 

(n − 1) H × 1 vectors of all users′ request profile 

except that of user i. In this paper, we assume that each 

user i (i ∈ N ) has a reservation value vi . That is to 

say, cloud user i will prefer to use the cloud service if 

Ui (λi , λ−i) ≥ vi and refuse to use the cloud service 

otherwise. For the cloud provider, its objective is 

trying to select an appropriate servers subset S from M 

and configure a proper request allocation strategy pS , 

such that its net reward, i.e., the charge to all cloud 

users minus its energy cost, is maximized. We denote 

π as the net profit, then the cloud provider′ s problem 

is to maximize the value π. That is, 

 

IV GAME FORMULATION AND ANALYSES 

Since the multiple users have to compete for using the 

computing resources, and their strategies are subject to 

that of the cloud provider, we formulate the 

relationship between the cloud provider and its 

multiple users into a Stackelberg game. For the cloud 

provider, we try to approximate its server selection 

solution space by using a control parameter and 

configure an appropriate request allocation strategy to 
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the selected servers. For the multiple users, we 

characterize their competitions as a non-cooperative 

game and formulate them into a generalized Nash 

equilibrium problem (GNEP). By employing 

variational inequality (VI) theory, we analyze the the 

formulated GNEP. Then, we propose an iterative 

algorithm (IA) to compute appropriate strategies for 

both the cloud provider and its multiple users. 

A Game Formulation 

Game theory studies the problems in which 

multiple players try to maximize their utilities or 

minimize their disutilities. In this subsection, we 

characterize the optimization problem presented in 

Section 3.5 as a Stackelberg game, which is a 

sequential game played between a Leader and a set of 

Followers [36].            All of them try to maximize 

their own utilities. In our work, the cloud provider 

plays the role of the leader, who tries to select an 

appropriate servers subset S from M and configure a 

proper request allocation strategy pS to the selected 

servers, such that it can appeal user requests as many 

as possible while its cost is relatively low. We denote 

QL as the servers selection space, then QL can be 

expressed as 

 

Each cloud user is regarded as a follower, i.e., 

the set of followers is the n cloud users. Notice that 

when given S and pS , the workload of each server j (j 

∈ S) in time slot h (h ∈ H) never exceeds its 

processing capacity, i.e., p h j λ h Σ < cjµj (∀j ∈ S). 

We denote σ as a relative small constant and add the 

constraint λ h Σ ≤ (1 − σ) λ h up, where λ h up = 

minj∈S { cjµj / p h j } . Then the request strategy set 

of user i (i ∈ N ) can be expressed as 

 

Then, the joint strategy set of all followers is given by 

 

A Stackelberg game assumes certain decision 

power for both the leader and followers, with the 

leader processing a higher priority. The followers have 

to make their decisions subject to the leader’s strategy 

[37] and try to maximize their own utilities. Therefore, 

the profit maximization problem of the cloud provider 

can be formulated as the following optimization 

problem (OPT): 

 

V PERFORMANCE EVALUATION 

In this section, we provide some numerical 

results to validate our theoretical analyses and 

illustrate the performance of our proposed IA 

algorithm. 

 

In the following simulation results, we assume 

that the number of cloud users is at most 50 over 

future H time slots, which is not a very long period of 

time. Specifically, each time slot is set as one hour of a 

day and H is set as 24. As shown in Table 2, the server 

set controlling parameter (ε) is varied from 0.2 to 1.0 

with increment 0.2. The number of cloud users (n) is 

varied from 5 to 50 with increment 5. For each server j 

(j ∈ M), the energy consumption parameter ξj is 

randomly chosen from 0.01 to 2.5 and aj is set as a 

constant 3. Each cloud user i (i ∈ N) chooses a weight 

value from 1 to 10 to balance his/her net profit and 

time utility. For simplicity, the reservation value vi 

and total requests Λi for each user i (i ∈ N ) are set as 

0 and 35, respectively. Market benefit factor r is set to 

100, per request charge by the cloud provider c is 

equal to 60, and δ is set as 1.1. The cost of one unit of 

energy is set as 0.02. In our simulation, the number of 

servers (m) in the cloud provider is set as 50 and its 

total processing capacity (µM) is equal to 800. 

 

 

 

 

http://www.jetir.org/


© 2018 JETIR  August 2018, Volume 5, Issue 8                                      www.jetir.org  (ISSN-2349-5162) 

JETIR1808170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 101 

 

A. Results of One Instance 

 

Fig. 2 presents the utility results for five 

different cloud users versus the number of iterations of 

our proposed Calculate λ algorithm (Algorithm 4) in a 

certain instance. Specifically, it presents the utility 

results of 5 randomly selected cloud users (users 1, 4, 

5, 8, and 10). We can observe that the utilities of all 

users seem to linearly increase and finally reach a 

relatively stable state with the increase of iteration 

number. The reason behind lies in that the request 

strategies of all users are kept unchanged, i.e., reach a 

generalized Nash equilibrium solution after some 

iterations. In addition, the utility with a larger weight 

value reaches a relatively stable state more faster. This 

trend also reflects the convergence process of our 

proposed IA algorithm at each iteration. It can be seen 

that the utility of each user has already achieved a 

relatively stable state after about 80 iterations, which 

reflects the high efficiency of the developed algorithm. 

In Fig. 3, we plot the request profile of some 

cloud users for a scenario of 50 users. Specifically, it 

presents the requests shape of some users over future 

24 time slots. We randomly select 3 users (users 25, 

38, and 42). It can be seen that the requests of all users 

tend to decrease with the delay of time slot. The reason 

behind lies in the fact that in our proposed model, we 

take into average response time into account and the 

deteriorating factor grows exponentially, which also 

demonstrates the downward trend of the aggregated 

requests shown in Fig. 4, i.e., the aggregated requests 

slightly decrease with the delay of time slot. 

 

In Fig. 5, we present the impacts of different 

servers subset. Table 3 shows an instance of servers 

subset when ε is 0.2. In that table, we show the first 8 

server subset obtained by our Calculate Q (ε) L 

algorithm (Algorithm 1). Fig. 5 shows the 

corresponding results. Specifically, it shows the total 

charge CT from all users, where CT = c ∑ i∈N ∑ h∈H 

λ h i , total energy cost ET , where ET = H ∑ j∈S Ej , 

and net profit π = CT −ET over future H time slots. As 

can be seen from Fig. 5, at first, the net profit of the 

cloud provider increases with the increase oftotal 

processing capacity of provided servers. However, it 

decreases after the number of subset exceeds 4. The 

reason behind lies in the fact that at the beginning, the 

aggregated requests from all users can not exceed the 

total processing capacity provided by the cloud 

provider (i.e., λ h Σ < µS , ∀h ∈ H), while the provided 

processing capacity is large enough, the aggregated 

requests can not rise more due to their individual limits 

(i.e., λ h i < Λi , ∀i ∈ N ). This is also the reason that 

the total charge (CT ) increases at first and reaches a 

relatively stable state when the processing capacity is 

large enough, as well as the trend of energy cost and 

thus reflects the results of net profit (see Fig. 5). 
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B Results of Various Configurations 

Instances To simulate the heterogeneous 

system and the different preferences of multiple cloud 

users, i.e., the different preferences over payments and 

time efficiencies, we randomly generate the server 

parameter (ξj ) for each server and the weight value 

(wi) for each user according to Table 2. For the 

simulated results, we perform 300 runs, of which the 

average value is computed. 

Fig. 6 and Fig. 7 show the impacts of the 

number of cloud users and the value of ε. In Fig. 6, we 

compare the net profit (π) obtained by our IA 

algorithm with that of using all 50 servers (πT ). The 

number of cloud users increases from 5 to 50 with 

increment 5. As mentioned above, we perform 300 

runs and compute the average value. As shown in Fig. 

6, we also present the maximal and minimal profit 

values over the 300 runs. 

 

Obviously, the average net profit value 

obtained by our IA algorithm increases with the 

increase of the number of cloud users. We can also 

observe that the net profit by using all servers is 

negative at the beginning. The reason behind lies in 

that the aggregated requests from all users are not 

enough while the total energy cost of all servers is 

large. However, our results are always better than 

those of by using all servers. This shows that our IA 

algorithm can select appropriate servers to provide 

services. Fig. 7 shows the impact of ε. It can be seen 

that the average net profit value obtained by IA 

algorithm is the largest when ε is set to 0.2. The reason 

behind lies in the fact that the smaller the value of ε is, 

it takes more probability for our algorithm to select an 

appropriate servers subset equalling to the optimal 

one, that is, it takes more probability that the optimal 

servers subset is included in our approximated solution 

space. 

 

VI CONCLUSIONS AND FUTURE WORK 

With the popularization of cloud computing 

and its many advantages such as cost-effectiveness, 

elasticity, and scalability, more and more applications 

are moved from local computing environment to cloud 

center. In this work, we try to design a new service 

mechanism for profit optimizations of both a cloud 

provider and its multiple users. We consider the 

problem from a game theoretic perspective and 

characterize the relationship between the cloud 

provider and its multiple users as a Stackelberg game, 

in which the strategies of all users are subject to that of 

the cloud provider. The cloud provider tries to select 

appropriate servers and configure a proper request 

allocation strategy to reduce energy cost while 

satisfying its cloud users at the same time. We 

approximate its server selection space by adding a 

controlling parameter and configure an optimal request 

allocation strategy. For each user, we design a utility 

function which combines the net profit with time 

efficiency and try to maximize its value under the 

strategy of the cloud provider. We formulate the 

competitions among all users as a generalized Nash 
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equilibrium problem (GNEP). We solve the problem 

by employing varational inequality (VI) theory and 

prove that there exists a generalized Nash equilibrium 

solution set for the formulated GNEP. Finally, we 

propose an iterative algorithm (IA), which 

characterizes the whole process of our proposed 

service mechanism. We conduct some numerical 

calculations to verify our theoretical analyses. The 

experimental results show that our IA algorithm can 

reduce energy cost and improve users utilities to 

certain extent by configuring proper strategies. As part 

of future work, we will study the cloud center choice 

among multiple different cloud providers or determine 

a proper mixed choice strategy. Another direction is 

the opposite, we consider problem from cloud 

providers and study the competitions among multiple 

cloud providers, which may incorporate charge price, 

service quality, and so on. 
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