Some New Divisor Cordial Graphs

${ }^{1} \mathrm{v}$. Mohan, ${ }^{2}$ A. Sugumaran
${ }^{1,2}$ Department of Mathematics,Government Arts College, Thiruvannamalai - 606603, Tamilnadu, India.

Abstract

A divisor cordial labeling of a graph G with vertex set V is a bijection f from V to $\{1,2,3, \ldots,|\mathrm{~V}|\}$ such that when each edge uv is assigned the label 1 if $f(u)$ divides $f(v)$ or $f(v)$ divides $f(u)$, and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph is called divisor cordial if, it admits divisor cordial labeling. In this paper we prove that the graphs such as $\mathrm{DS}\left(\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}\right), \mathrm{DS}(\mathrm{Gl}(\mathrm{n}))$, W -graph W_{n}, the graph $\mathrm{B}(\mathrm{m}) \odot u_{n} \mathrm{~K}_{1}$, Herschel graph H_{s} and switching of an apex vertex in the Hershel graph H_{s} are divisor cordial graphs.

AMS subject classification. 05C78

Keywords. Cordial graph, divisor cordial labeling, divisor cordial graph, degree splitting graph, globe and Hershel graph.

1. Introduction. All graphs in this paper are simple, finite, connected and undirected graphs. Let $\mathrm{G}=(V(G), E(G))$ be a graph with p vertices and q edges. For standard terminology and notations related to graph theory we refer to Harary [3] while for number theory we refer to Burton [2]. Graph labeling is a technique in which the vertices and edges are assigned real values subject to certain conditions. For a dynamic survey on various graph labeling problems we refer to Gallian [4]. The concept of cordial labeling was introduced by Cahit [1]. After this many labeling schemes are also introduced with minor variations in cordial labeling.

The concept of divisor cordial labeling was introduced by Varatharajan et al. [8], further they have proved that the path, cycle, wheel, star, $K_{2, n}$ and $K_{3, n}$ are divisor cordial graphs. The divisor cordial labeling of full binary trees, $\mathrm{G}^{*} \mathrm{~K}_{2}$, n, $\mathrm{G}^{*} \mathrm{~K}_{3, \mathrm{n}},\left\langle K_{1, n}^{(1)}, K_{1, n}^{(2)}\right\rangle$ and $\left\langle K_{1, n}^{(1)}, K_{1, n}^{(2)}, K_{1, n}^{(3)}\right\rangle$ are reported by the same authors in [9]. Vaidya et al. [6, 7] have proved that degree splitting graph of $\mathrm{B}_{\mathrm{n}, \mathrm{n}}$, shadow graph of $B_{n, n}$, square graph of $B_{n, n}$, Helm H_{n}, flower graph $F l_{n}$, Gear graph G_{n}, switching of a vertex in C_{n}, switching of a rim vertex in W_{n}, switching of the apex vertex in Helm H_{n} are divisor cordial graphs. The divisor cordial labeling of some cycle related graphs are reported by Maya et al. [5]. In this paper we have discussed divisor cordial labeling of $\mathrm{DS}\left(\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}\right)$, $\mathrm{DS}(\mathrm{Gl}(\mathrm{n}))$, Wgraph W_{n}, the graph $\mathrm{B}(\mathrm{m}) \odot u_{n} \mathrm{~K}_{1}$, Herschel graph H_{s} and switching of an apex
vertex in the Hershel graph H_{s}. We will provide a brief summary of definitions and other information which are necessary for the present work.

Definition 1.1 A mapping $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ is called a binary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f. If for an edge $e=u v$, the induced edge labeling $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$ is given by $\mathrm{f}^{*}(\mathrm{e})=|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$.

Notation 1.2 We denote $\mathrm{v}_{\mathrm{f}}(\mathrm{i})=$ number of vertices having label i and $\mathrm{e}_{\mathrm{f}}(\mathrm{i})=$ number of edges having label i , where $\mathrm{i}=0,1$.

Definition 1.3 A binary vertex labeling of a graph G is called a cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is called cordial if it admits cordial labeling.

Definition 1.4 A divisor cordial labeling of a graph G with vertex set V is a bijection f from V to $\{1,2,3, \ldots,|\mathrm{~V}|\}$ such that each edge uv is assigned the label 1 if either $f(u)$ or $f(v)$ divides the other and 0 otherwise. In addition, the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph is called divisor cordial if it admits divisor cordial labeling.

Definition 1.5 The graph $K_{l, n, n}$ is obtained from the star graph $\mathrm{K}_{1, n}$ by subdividing each and every edge of $\mathrm{K}_{1, \mathrm{n}}$ by inserting a new vertex.

Definition 1.6 Let G be a simple (p, q) graph. For each i, let $\mathrm{S}_{\mathrm{i}}(1 \leq i \leq m)$ be the set of vertices having the same degree in G . The degree splitting graph of G denoted by $\operatorname{DS}(G)$ is the graph obtained from G by adding new vertices w_{1}, w_{2}, w_{3}, \ldots, w_{m} such that joining w_{i} to each vertex of S_{i} respectively, for each $i=1$, $2, \ldots, \mathrm{~m}$.

Definition 1.7 A globe is a graph obtained from two isolated vertices are joined by n paths of length 2 and it is is denoted by $\mathrm{Gl}(\mathrm{n})$.
Definition 1.8 The vertex switching G_{v} of graph G is obtained by taking a vertex v of G , removing all the edges incident to v and adding edges joining v to every other vertices which are not adjacent to v in G .

Definition 1.9 Let S_{m}, S_{n} be any two shell graphs with orders m and n respectively. If the apex vertices of S_{m} and S_{n} are adjoined in to a single vertex, then the resulting graph is called a bow graph and it is denoted by $\mathrm{B}(\mathrm{m}, \mathrm{n})$. If bow graph in which each shell is of same order m , then it is called a uniform bow graph and it is denoted by $\mathrm{B}(\mathrm{m}, \mathrm{m})$ or simply $\mathrm{B}(\mathrm{m})$.

Definition 1.10 Let v be a vertex in graph G. The graph $G \bigodot_{v} K_{l}$ is obtained from G by adding a new vertex u and connect u and v by an edge.

Definition 1.11 The Herschel graph H_{s} is a bipartite undirected graph with 11 vertices and 18 edges. The Herschel graph H_{s} is shown in Figure 1.

Figure 1. Herschel graph H_{s}

2. Main results

Theorem 2.1 The graph $\operatorname{DS}\left(\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}\right)$ is a divisor cordial graph.
Proof. Let $\mathrm{V}\left(\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}\right)=\left\{\mathrm{u}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq i \leq n\right\}$, where $u_{i}^{\prime} \mathrm{s}$ are vertices of degree 2 and $v_{i}^{\prime} \mathrm{s}$ are the pendant vertices in $\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}$. Let u be an apex vertex of $\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}$. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be the new vertices of $\mathrm{DS}\left(\mathrm{K}_{1, n, n}\right)$ corresponding to set of vertices of degrees 1,2 and n respectively.

Let $G=\operatorname{DS}\left(K_{1, n, n}\right)$. Note that $|V(G)|=2 n+4$ and $|E(G)|=4 n+1$. We define a vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 2 \mathrm{n}+4\}$ as follows:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=1, \mathrm{f}(\mathrm{x})=2, \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1 \text { for } 1 \leq i \leq n, \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+2 \text { for } 1 \leq i \leq n, \\
& \mathrm{f}(\mathrm{z})=2 \mathrm{n}+4 .
\end{aligned}
$$

It is clear that all edges incident to u will take 1. i.e., $\mathrm{n}+1$ edges have been assigned the label 1 . All edges $u_{i} v_{i}(1 \leq i \leq n)$ are assigned the value 0 , since each label of u_{i} is relatively prime to label v_{i}. i.e., n edges have been assigned
the label 0 . All edges $\mathrm{xv}_{\mathrm{i}}(1 \leq i \leq n)$ are assigned the value 1 , since the labels of both x and v_{i} are even. i.e., n edges have been assigned the label 1 .

Figure 2. Divisor cordial labeling of $\operatorname{DS}\left(\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}\right)$
We need to assign a label y such that each edge $\mathrm{yv}_{\mathrm{i}}(1 \leq i \leq n)$ must take the value 0 , so we assign $f(y)=2 n+3$, if $2 n+3$ is a prime number. If $2 n+3$ is not a prime number, in that case let p be the largest prime number in $\{1,2, \ldots, 2 \mathrm{n}+4\}$. In such a case, we interchange the labels $\mathrm{p} \& 2 \mathrm{n}+3$ such that $\mathrm{f}(\mathrm{y})=\mathrm{p}$. Since p is a largest prime, so that each edge $\mathrm{yu}_{\mathrm{i}}(1 \leq i \leq n)$ will take the value 0 . Thus e_{f} (0) $-\mathrm{e}_{\mathrm{f}}(1) \mid \leq 1$. Therefore, G is a divisor cordial graph. The divisor cordial labeling of $\mathrm{DS}\left(\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}\right)$ is shown in Figure 2.

Theorem 2.2 The W -graph W_{n} admits divisor cordial labeling.
Proof. Let $K_{1, n}^{1}$ and $K_{1, n}^{2}$ be the first and second copies of star graph with apex vertices a and b respectively. Let $V\left(K_{1, n}^{1}\right)=\left\{a, x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ and $V\left(K_{1, n}^{2}\right)=$ $\left\{\mathrm{b}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$. We obtain the W -graph by adjoining x_{n} and y_{1}. Let $\mathrm{G}=$ W_{n}. Then $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}+1$ and $|\mathrm{E}(\mathrm{G})|=2 \mathrm{n}$. Now we define vertex labeling f : $\mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 2 \mathrm{n}+4\}$ as follows:

$$
\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{~b})=\text { Largest prime number } \mathrm{p} \text { in the set }\{1,2, \ldots, 2 \mathrm{n}+1\} .
$$

Label the remaining vertices $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$ and $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{n}}$ from the set $\{1,2, \ldots, 2 \mathrm{n}+1\}-\{1, \mathrm{p}\}$ uniquely in any order. By the above labeling pattern, we have $\left|e_{f}(0)-e_{f}(1)\right|=0$. Hence the W -graph admits divisor cordial labeling. The divisor cordial labeling of W_{n} is shown in Figure 3.

Figure 3. Divisor cordial labeling of W_{n}
Theorem 2.3 Degree splitting graph of globe $\mathrm{Gl}(\mathrm{n})$ is a divisor cordial graph.
Proof. Let $\mathrm{G}=\mathrm{DS}(\mathrm{Gl}(\mathrm{n}))$. We need to consider the following three cases.
Case 1. When $\mathrm{n}=1$
Now we define the vertex labeling of $\mathrm{DS}(\mathrm{Gl}(1))$ as shown in Figure 4.

Figure 4. Divisor cordial labeling of $\mathrm{DS}(\mathrm{Gl}(1))$
Let v be the new vertex corresponding to the pendant vertices a and b . Also let w be the new vertex corresponding to the vertex u of degree 2 .

Case 2. When $\mathrm{n}=2$
Let v be the new vertex in $\operatorname{DS}(\mathrm{Gl}(2))$, corresponding to the vertices a, b, u_{1} and u_{2} (since each vertex in $\mathrm{Gl}(2)$ is of degree 2). Now we define the vertex labeling as shown in Figure 5.

Figure 5. Divisor cordial labeling of $\mathrm{DS}(\mathrm{Gl}(2))$
Case 3. When $n \geq 3$
In G , let Let v be the new vertex corresponding to the vertices a and b . Also let w be the new vertex corresponding to the vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ of degree 2 . Note that $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+4$ and $|\mathrm{E}(\mathrm{G})|=3 \mathrm{n}+2$. We define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G})$ $\rightarrow\{1,2, \ldots, \mathrm{n}+4\}$ as follows:

Figure 6. Divisor cordial labeling of $\mathrm{DS}(\mathrm{Gl}(\mathrm{n})$)
$f(a)=1, f(b)=$ Largest prime number p in the set $\{1,2, \ldots, n+4\}, f(w)=2$.
We label the remaining vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and v from the set $\{1,2, \ldots$, $\mathrm{n}+4\}-\{1,2, \mathrm{p}\}$ uniquely in any order. In view of the above labeling pattern, we have $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Hence $\operatorname{DS}(\mathrm{Gl}(\mathrm{n}))$ admits divisor cordial labeling. The divisor cordial labeling of $\mathrm{DS}(\mathrm{Gl}(\mathrm{n}))$ is shown in Figure 6.

Theorem 4. The graph $\mathrm{B}(\mathrm{n}) \odot u_{m} \mathrm{~K}_{1}$ is a divisor cordial graph, where $\mathrm{B}(\mathrm{n})$ is a uniform bow graph.

Proof. Let the graph $G=B(n) \odot u_{m} K_{1}$. Let the vertex set $V(G)=\left\{w_{0}, u_{1}, u_{2}, u_{3}\right.$, $\left.\ldots, u_{n}, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w_{0} is the apex vertex. $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ are the vertices of first shell adjacent to w_{0} and $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ are the vertices of second shell adjacent to w_{0}. In G, the new vertex u is connected with u_{n} by an edge. Note that $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}+2$ and $|\mathrm{E}(\mathrm{G})|=4 \mathrm{n}-1$. We define vertex labeling f : $\mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 2 \mathrm{n}+2\}$ as follows:

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{w}_{0}\right)=1 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+1 \text { for } 1 \leq i \leq n \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+1 \text { for } \mathrm{n}+1 \leq i \leq 2 n+1
\end{aligned}
$$

Figure 7. Divisor cordial labeling of $\mathrm{B}(\mathrm{n}) \odot u_{m} \mathrm{~K}_{1}$
By definition of f, we obtain $e_{f}(0)=2 n-1$ and $e_{f}(1)=2 n$. Thus $\left|e_{f}(0)-e_{f}(1)\right|=$ 1. Hence G admits divisor cordial labeling. The divisor cordial labeling of $\mathrm{B}(\mathrm{n}) \odot u_{m} \mathrm{~K}_{1}$ is shown in Figure 7.

Theorem 5. The Herschel graph H_{s} is a divisor cordial graph.
Proof. Consider the Herschel graph H_{s}. We see that $\left|\mathrm{V}\left(\mathrm{H}_{\mathrm{s}}\right)\right|=11$ and $\left|\mathrm{E}\left(\mathrm{H}_{\mathrm{s}}\right)\right|=$ 18. We define vertex labeling function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 11\}$ as follows:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1 ; 1 \leq i \leq 4 \\
& \mathrm{f}\left(\mathrm{u}_{5}\right)=6, \mathrm{f}\left(\mathrm{u}_{6}\right)=11, \mathrm{f}\left(\mathrm{u}_{7}\right)=10, \mathrm{f}\left(\mathrm{u}_{8}\right)=4, \mathrm{f}\left(\mathrm{u}_{9}\right)=2, \mathrm{f}\left(\mathrm{u}_{10}\right)=8
\end{aligned}
$$

Figure 8. Divisor cordial labeling of Herschel graph H_{s}
In view of the above labeling pattern, we have $\left|e_{f}(0)-e_{f}(1)\right|=0$. Hence Herschel graph H_{s} is a divisor cordial graph. The divisor cordial labeling of Herschel graph H_{s} is shown in Figure 8.

Theorem 6. Switching of an apex vertex in the Herschel graph H_{s} is a divisor cordial graph.

Proof. Let G be the Switching of an apex vertex in the Herschel graph H_{s}. Note that $|\mathrm{V}(\mathrm{G})|=11$ and $|\mathrm{E}(\mathrm{G})|=20$. We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 11\}$ as follows:

$$
\mathrm{f}(\mathrm{u})=1, \mathrm{f}\left(\mathrm{u}_{1}\right)=5, \mathrm{f}\left(\mathrm{u}_{2}\right)=6, \mathrm{f}\left(\mathrm{u}_{3}\right)=11, \mathrm{f}\left(\mathrm{u}_{4}\right)=9, \mathrm{f}\left(\mathrm{u}_{5}\right)=3, \mathrm{f}\left(\mathrm{u}_{6}\right)=7, \mathrm{f}\left(\mathrm{u}_{7}\right)=
$$ $10, \mathrm{f}\left(\mathrm{u}_{8}\right)=4, \mathrm{f}\left(\mathrm{u}_{9}\right)=2, \mathrm{f}\left(\mathrm{u}_{10}\right)=8$.

Figure 9. Divisor cordial labeling of switching of an apex vertex in Herschel graph H_{s}

In view of the above labeling pattern, we have $\left|e_{f}(0)-e_{f}(1)\right|=0$. Hence, switching of an apex vertex in Herschel graph H_{s} is a divisor cordial graph.

The divisor cordial labeling of switching of an apex vertex in Herschel graph H_{s} is shown in Figure 9.

3. Conclusion

Labeling of graphs connecting graphs with number theory. Divisor cordial labeling is an active area of research at present. It is not necessary that all graphs are divisor cordial graphs. In literature many graphs are shown as divisor cordial graphs. In this paper we have investigated some new divisor cordial graphs such as $\operatorname{DS}\left(\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}\right)$, $\mathrm{DS}(\mathrm{Gl}(\mathrm{n}))$, W-graph W_{n}, the graph $\mathrm{B}(\mathrm{m}) \odot u_{n} \mathrm{~K}_{1}$, Herschel graph H_{s} and switching of an apex vertex in the Herschel graph H_{s}.

4. Acknowledgment

The authors' thanks are due to the anonymous referees for careful reading and constructive suggestions for the improvement in the first draft of this paper.

5. References

1. I. Cahit. 1987. Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatorial, vol. 23, pp. 201-207.
2. David M. Burton. 1980. Elementary number theory, Second edition, Wm. C. Brown Company Publishers.
3. F. Harary. 1972. Graph theory, Addison - Wesley, Reading, Mass.
4. J. A. Gallian. 2015. A dynamic survey of graph labeling, The Electronic Journal of Combinatorics.
5. P. Maya and T. Nicholas. 2014. Some new families of divisor cordial graph, Annals of Pure and Applied Mathematics, vol. 5, No. 2, pp. 125 - 134.
6. S. K. Vaidya and N. H. Shah. 2013. Further results on divisor cordial labeling, Annals of Pure and Applied Mathematics, vol. 4, No. 2, pp. 150-159.
7. S. K. Vaidya and N. H. Shah. 2013. Some star and bistar related divisor cordial graphs, Annals of Pure and Applied Mathematics, vol. 3, No. 1, pp. 67 77.
8. R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan. 2011. Divisor cordial graphs, International J. Math. Combin., vol. 4, pp. $15-25$.
9. R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan. 2012. Special classes of divisor cordial graphs, International Mathematical Forum, vol. 7, No. 35, pp. 1737 - 1749.
