VARIOUS CHARACTERAZATION OF (*i*, *j*)-*vp* CLOSED SETS IN BITOPOLOGICAL SPACES

S.V.Vani M.phil Scholar, St.Mary's college, Thoothukudi. G.Priscilla Pacifica Assistant Professor, St.Mary's college,Thoothukudi.

ABSTRACT: In this paper we introduce some new bitopological spaces (i, j)- T_{vp} ,(i, j)- g^*pT_{vp} ,(i, j)- sgT_{vp} ,(i, j)- ΨT_{vp} spaces as applications.Further we introduce and study vp-continuity in bitopological spaces and investigate their properties.

KEYWORDS: (i, j)-vp closed sets; (i, j)- T_{vp} space,(i, j)- g^*pT_{vp} space,(i, j)- sgT_{vp} space,(i, j)- ΨT_{vp} space;(i, j)-vp continuity.

AMS Classification code: 54A05, 54A10, 54E55

INTRODUCTION:

A triple (X, τ_1, τ_2) where X is a non empty set τ_1 and τ_2 are topologies on X is called a bitopological space and Kelly[7] initiated the study of such spaces. In 1985, Fukutake[4] introduced the concepts of g-closed sets in bitopological spaces and after several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. Veerakumar[18] introduced and studied the concepts of g^* -closed set and g^* continuity in topological spaces. Norman Levine[13], and R.Devi et.al[6] introduced $T_{1/2}$ spaces and T_d spaces respectively. In 2003, M.Sheik john and P.sundaram[14] was introduced the concept of $T_{1/2}^*$ and $*_{T_{1/2}}$.

The purpose of this paper is to introduce the concepts of vp-continuity, T_{vp} -spaces, g^*pT_{vp} -spaces, gT_{vp} -spaces, ΨT_{vp} -spaces for bitopological spaces and investigate some of their properties.

2.PRELIMINARIES

Definition 2.1 A subset A of a topological space (X, τ) is called

1. regular-open set if A = int(cl(A))

- 2. semi-open set if $A \subseteq cl(int(A))$
- 3. α -closed if $cl(int(cl(A))) \subseteq A$
- 4. generalized closed set(*g*-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 5. $g^{\#}$ -closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in (X, τ) .

6. a α -generalized closed(briefly αg -closed) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

7. g^*p -closed if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

Definition 2.2 A subset *A* of a bitopological space (X, τ_i, τ_j) is called

- 1. a (i, j)-g-closed if τ_i -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is open in τ_i .
- 2. a (i,j)- g^* -closed if τ_j - $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in τ_i .
- 3. a (i, j)-gs-closed if τ_j -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i .
- 4. a (i,j)- g^*p -closed τ_j - $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in τ_i .
- 5. a (i, j)- $g^{\#}$ -closed τ_j - $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in τ_i .
- 6. a (i, j)- g^{**} -closed if τ_j - $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* -open in τ_i .
- 7. a (i, j)- $g^{\#}$ -closed if τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $g^{\#}$ -open in τ_i .
- 8. a (i, j)-sg-closed if τ_j -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in τ_i .
- 9. a (i, j)-vp-closed if τ_j - $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in τ_i .

Definition 2.3: A bitopological space (X, τ_1, τ_2) is called

- 1. a (i,j)- $T_{1/2}$ space if every (i,j)-g-closed set in it is τ_j -closed.
- 2. a (i,j)- $T_{1/2^*}$ space if every (i,j)- g^* -closed set in it is τ_j -closed.
- 3. a (i,j)-* $_{T_{1/2}}$ space if every (i,j)-g-closed set is (i,j)-g*-closed.
- 4. a (i, j)- T_d space if every (i, j)-gs-closed set is (i, j)-g-closed.
- 5. a (i, j)- $T_{s\alpha^{**}}$ space if every (i, j)-strongly α^{**} -closed set in it is τ_j -closed.
- 6. a (i,j)- g^*T_g space if every (i,j)- g^* -closed set is $(i,j) g^*s^*$ -closed. Where $i, j \in \{1,2\}$ and $i \neq j$.

Definition 2.4 A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- 1. (i, j)-*g*-continuous if $f^{-1}(V)$ is a (i, j)-*g*-closed in (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .
- 2. (i,j)- $g^{\#}$ -continuous if $f^{-1}(V)$ is a (i,j)- $g^{\#}$ -closed in (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .
- 3. (i, j)- \hat{g} -continuous if $f^{-1}(V)$ is a (i, j)- \hat{g} -closed in (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .
- 4. (i,j)- g^*p -continuous if $f^{-1}(V)$ is a $(i,j) g^*p$ -closed in (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .
- 5. (i, j)- αg -continuous if $f^{-1}(V)$ is a (i, j)- αg -closed in (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .
- 6. (i, j)- (Ψ) continuous if $f^{-1}(V)$ is a (i, j)- Ψ -closed in (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .

3.APPLICATIONS OF (i, j)-vp CLOSED SETS IN BITOPOLOGICAL SPACES

We introduce the following definition:

Definition 3.1: A space (X, τ_1, τ_2) is called a (i, j)- T_{vp} -space if every (i, j)-vp closed set is τ_j -closed.

Example 3.2: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$

 τ_2 -closed sets are { φ , {b, c}, {c}, {b}, X}

(i, j)-vp closed sets are $\{\varphi, \{b\}, \{c\}, \{b, c\}, X\}$

Therefore (i, j)-vp closed set is τ_j -closed.

Definition 3.3: A space (X, τ_1, τ_2) is called (i, j)- g^*pT_{vp} -space if every (i, j)-vp closed set is (i, j)- g^*p closed.

Example 3.4: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, X\}, \tau_2 = \{\varphi, \{a\}, \{a, b\}, X\}$

Hence our condition holds.

Therefore (i, j)-vp closed set is (i, j)- g^*p closed.

Definition 3. 5: A space (X, τ_1, τ_2) is called (i, j)-sgT_{vp}-space if every (i, j)-vp closed set is (i, j)-sg closed.

Example 3.6: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{c\}, \{a, c\}, X\}, \tau_2 = \{\varphi, \{a\}, X\}$

(i, j)-vp closed sets are $\{\varphi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$

(i, j)-sg closed sets are $\{\varphi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$

Definition 3.7: A space (X, τ_1, τ_2) is called $(i, j) - \Psi T_{vp}$ -space if every (i, j) - vp closed set is $(i, j) - sg^*$ closed.

Example 3.8: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\varphi, \{a\}, \{a, b\}, X\}$

(i, j)-vp closed sets are $\{\varphi, \{b\}, \{c\}, \{b, c\}, X\}=(i, j)$ - sg^* closed set.

Proposition 3.9: Every (i, j)- T_{vp} -space is (i, j)- $T_{1/2}^*$ -space.

Proof: Let A be a (i, j)- g^* closed.

Then A is (i, j)-vp closed.Since (X, τ_1, τ_2) is a (i, j)- T_{vp} -space, A is τ_j -closed.

Therefore (X, τ_1, τ_2) is a $(i, j) - T_{1/2}^*$ -space.

Remark 3.10: Converse of the above proposition need not be true as seen from the following example:

Example 3.11: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, X\}, \tau_2 = \{\varphi, \{a\}, \{a, b\}, X\}$

(i,j)- g^* closed closed set is τ_j -closed and (X,τ_1,τ_2) is a (i,j)- $T_{\frac{1}{2}}^*$ -space.

(i, j)-vp closed sets are $\{\varphi, \{b\}, \{c\}, \{b, c\}, X\}$

A={b} is (i, j)-vp closed but not τ_j -closed.

Thus we proved , every $(i, j) - T_{1/2}^*$ -space need not be $(i, j) - T_{vp}$ -space.

Proposition 3.12: Every (i, j)- T_{vp} -space is (i, j)- sgT_{vp} -space.

Proof: Let A be (i, j)-vp closed set.

Then A is τ_i -closed, since the space is a (i, j)- T_{vp} -space.

Then A is (i, j)-sg closed and hence (X, τ_1, τ_2) is a (i, j)-sgT_{vp}-space.

Remark 3.13: Converse of the above proposition need not be true as seen from the following example:

Example 3.14: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{c\}, \{a, c\}, X\}, \tau_2 = \{\varphi, \{a\}, X\}$

(i, j)-vp closed sets are $\{\varphi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$

A={*a, b*} is (*i, j*)-*vp* closed but not τ_j -closed, (*X*, τ_1 , τ_2) is not a (*i, j*)- T_{vp} -space.

(i, j)-sg closed sets are $\{\varphi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$

Since every (i, j)-vp closed set is (i, j)-sg closed, (X, τ_1, τ_2) is a (i, j)- sgT_{vp} -space.

Therefore every (i, j)-sgT_{vp}-space need not be (i, j)-T_{vp}-space.

Proposition 3.15: Every (i, j)- T_{vp} -space is (i, j)- ΨT_{vp} -space.

Proof: Let A be (i, j)-vp closed set.

Then *A* is τ_i -closed and hence, *A* is (i, j)- sg^* closed.

Therefore (X, τ_1, τ_2) is a (i, j)- ΨT_{vp} -space.

Remark 3.16:Converse of the above proposition need not be true as seen from the following example:

Example 3.17: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{a, b\}, X\}, \tau_2 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$

(i, j)-vp closed closed sets are $\{\varphi, \{b, c\}, \{a, c\}, \{c\}, X\}$

(i, j)-vp closed closed set is τ_j -closed and (X, τ_1, τ_2) is a (i, j)- T_{vp} -space.

But (i, j)- sg^* closed sets are $\{\varphi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$

A={a} is (i, j)- sg^* closed but not (i, j)-vp closed closed.

Therefore (X, τ_1, τ_2) is not a (i, j)-sg^{*}T_{vp}-space.

Hence (i, j)-sg^{*}T_{vp}-space need not be (i, j)-T_{vp}-space.

Proposition 3.18: Every (i, j)-sgT_{vp}-space is (i, j)- Ψ T_{vp}-space.

Proof: Let A be (i, j)-vp closed set.

Then A is (i, j)-sg closed set and hence A is (i, j)-sg^{*} closed.

Therefore *A* is a (i, j)- ΨT_{vp} -space.

Proposition 3.19: Every (i, j)- T_{vp} space is (i, j)- $*_{T_{1/2}}$ space.

Proof: follows from the definition.

Remark 3.20: Converse of the above theorem need not be true as seen from the following example:

Example 3.21: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\varphi, \{a\}, \{c\}, \{a, c\}, X\}$

(i, j)-vp closed closed sets are $\{\varphi, \{b\}, \{a, b\}, \{b, c\}, X\}$

(i, j)-vp closed closed set is τ_j -closed and (X, τ_1, τ_2) is a (i, j)- T_{vp} -space.

But (i, j)- g^* closed sets are $\{\varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$

And we have (i, j)- g^* closed sets are (i, j)-g closed.

Therefore (X, τ_1, τ_2) is $(i, j) - *_{T_{1/2}}$ space.

A={a, c} is (i, j)- g^* closed but not (i, j)-vp closed closed.

Therefore (X, τ_1, τ_2) is not a (i, j)- T_{vp} -space.

Hence (i, j)- $*_{T_{1/2}}$ space need not be (i, j)- T_{vp} -space.

Remark 3.22: (i, j)- T_d ness is independent of (i, j)- T_{vp} -space.

Example 3.23: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, X\}, \tau_2 = \{\varphi, \{a\}, \{a, b\}, X\}$

(i, j)-gs closed sets are $\{\varphi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$

Since Every (i, j)-gs closed set is (i, j)-g closed.

Therefore (X, τ_1, τ_2) is a (i, j)- T_d space.

(i, j)-vp closed sets are $\{\varphi, \{b\}, \{c\}, \{b, c\}, X\}$

 $A=\{b\}$ is (i, j)-vp closed set but not τ_2 -closed.

Therefore (X, τ_1, τ_2) is not (i, j)- T_{vp} -space.

Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{a, b\}, X\}, \tau_2 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$

(i, j)-vp closed closed sets are $\{\varphi, \{c\}, \{a, c\}, \{b, c\}, X\}$

(i, j)-vp closed closed set is τ_i -closed and (X, τ_1, τ_2) is a (i, j)- T_{vp} -space.

(i, j)-gs closed sets are $\{\varphi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$

(i, j)-g closed sets are $\{\varphi, \{c\}, \{a, c\}, \{b, c\}, X\}$

A={b} is (i, j)-gs closed but not (i, j)-g closed.

Hence (X, τ_1, τ_2) is not (i, j)- T_d space.

Therefore (i, j)- T_d space is independent of (i, j)- T_{vp} -space.

Remark 3.24: (i, j)- T_d ness is independent of (i, j)- sgT_{vp} -space.

Example 3.25: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{b, c\}, X\}, \tau_2 = \{\varphi, \{a, c\}, X\}$

Then (X, τ_1, τ_2) is a (i, j)- T_d space.

(i, j)-sg closed sets are $\{\varphi, \{b\}, \{a, b\}, \{a, c\}, X\}$

(*i*, *j*)-*vp* closed closed sets are {All the subsets of X}

A={b, c} is not (i, j)-sg closed.

Therefore (X, τ_1, τ_2) is not (i, j)- sgT_{vp} -space.

Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\varphi, \{a\}, \{a, b\}, X\}$

Then (X, τ_1, τ_2) is a (i, j)- sgT_{vp} space.

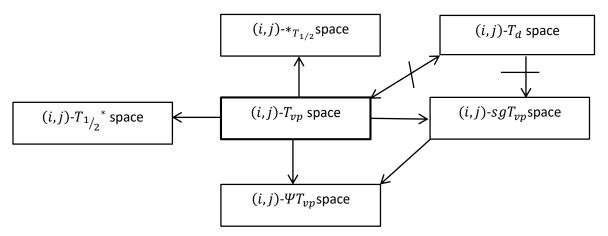
(i, j)-gs closed sets are $\{\varphi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$

 $\{i, j\}$ -g closed sets are $\{\varphi, \{c\}, \{a, c\}, \{b, c\}, X\}$

A={b} is not (i, j)-gs closed and (X, τ_1, τ_2) is not (i, j)- T_d space.

There fore (i, j)- T_d ness is independent of (i, j)- sgT_{vp} -space.

The above results can be shown in the following figure:



4.(*i*, *j*)-VP CONTINUOUS MAPS IN BITOPOLOGICAL SPACES

We introduce the following definition:

Definition 4.1: A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ from a topological space (X, τ_1, τ_2) to a topological space (Y, σ_1, σ_2) is called a (i, j)-vp continuous if the inverse image of every closed set in (Y, σ_1, σ_2) in (i, j)-vp closed set in (X, τ_1, τ_2) .

Proposition 4.2: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is continuous then it is (i, j)-vp continuous.

Proof: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a continuous map.

To prove : f is (i, j)-vp continuous.

Let *V* be a closed set in (Y, σ_1, σ_2) .

Since f is continuous, $f^{-1}(V)$ is closed in (X, τ_1, τ_2) .

Therefore $f^{-1}(V)$ is (i, j)-vp closed.

Hence f is (i, j)-vp continuous.

Remark 4.3: The converse of the above proposition need not be true as seen from the following example:

Example 4.4: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{a, b\}, X\}, \tau_2 = \{\varphi, \{a\}, \{b, c\}, X\}$ and

Let $Y = \{p, q\}, \sigma_1 = \{\varphi, Y, \{p\}\}; \sigma_2 = \{\varphi, Y, \{q\}\}$

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be defined by $f(b) = f(c) = \{p\}, f(a) = \{q\}$

Let us prove that f is (i, j)-vp continuous but not continuous.

(*i*, *j*)-*vp* closed sets are {*All the subsets of X*}

 $f^{-1}(p) = \{b, c\}$ and $f^{-1}(q) = \{a\}$ are (i, j)-vp closed set in (X, τ_1, τ_2)

Therefore *f* is (i, j)-*vp* continuous but not continuous in (X, τ_1, τ_2) .

Proposition 4.5: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(i, j) - g^{\#\#}$ continuous then it is (i, j) - vp continuous.

Proof :Let *V* be a closed set in (Y, σ_1, σ_2) .

Then $f^{-1}(V)$ is $(i, j)-g^{\#}$ closed and every $(i, j)-g^{\#}$ closed set is (i, j)-vp closed.

Therefore $f^{-1}(V)$ is (i, j)-vp closed.

Hence f is (i, j)-vp continuous.

Remark 4.6:The converse of the above proposition need not be true as seen from the following example:

Example 4.7: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{a, c\}, X\}, \tau_2 = \{\varphi, \{a\}, X\}$ and

 $Y = \{p, q\}, \sigma_1 = \{\varphi, Y, \{p\}\}, \sigma_2 = \{\varphi, Y, \{q\}\}$

Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = p; f(b) = q

We have that (i, j)-vp closed sets of (X, τ_1, τ_2) are all the subsets of X.

 $f^{-1}(p) = \{a, c\}; f^{-1}(q) = \{b\}$ are (i, j)-vp closed sets in (X, τ_1, τ_2)

Hence f is a (i, j)-vp continuous.

Also we have that (i, j)- $g^{\#}$ closed sets are $\{\varphi, \{b\}, \{a, b\}, \{b, c\}, X\}$

 $f^{-1}(p) = \{a, c\}$ is not $(i, j) - g^{\#\#}$ closed set in (X, τ_1, τ_2) .

Therefore f is not $(i, j)-g^{\#\#}$ continuous.

Hence *f* is (i, j)-vp continuous but not (i, j)- $g^{\#\#}$ continuous.

Proposition 4.8: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(i, j) - \hat{g}$ continuous then it is (i, j) - vp continuous.

Proof: Let *V* be a closed set in (Y, σ_1, σ_2) .

Then $f^{-1}(V)$ is (i, j)- \hat{g} closed and every (i, j)- \hat{g} closed set is (i, j)-vp closed.

Therefore $f^{-1}(V)$ is (i, j)-vp closed.

Hence f is (i, j)-vp continuous.

Remark 4.9: The converse of the above proposition need not be true as seen from the following example:

Example 4.10: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{b\}, X\}, \tau_2 = \{\varphi, \{c\}, X\}$ and

$$Y = \{p, q\}, \sigma_1 = \{\varphi, Y, \{p\}\}, \sigma_2 = \{\varphi, Y, \{q\}\}$$

Define a mapping $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(b)=f(c)=p; f(a)=q

We have that (i, j)-vp closed sets of (X, τ_1, τ_2) are $\{\varphi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$

 $f^{-1}(p) = \{b, c\}; f^{-1}(q) = \{b\}$ are (i, j)-vp closed sets in (X, τ_1, τ_2)

Hence f is a (i, j)-vp continuous.

Also we have that (i, j)- \hat{g} closed sets are $\{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$

 $f^{-1}(p) = \{b, c\}$ is not $(i, j) - \hat{g}$ closed set in (X, τ_1, τ_2) .

Therefore f is not (i, j)- \hat{g} continuous.

Hence f is (i, j)-vp continuous but not (i, j)- \hat{g} continuous.

Proposition 4.11: If $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is (i,j)-vp continuous then it is (i,j)- αg continuous.

Proof: Let V be a closed set in (Y, σ_1, σ_2) .

Then $f^{-1}(V)$ is (i, j)-vp closed and every (i, j)-vp closed set is (i, j)- αg closed.

Therefore $f^{-1}(V)$ is (i, j)- αg closed.

Hence f is (i, j)- αg continuous.

Remark 4.12: The converse of the above proposition need not be true as seen from the following example:

Example 4.13: Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{b\}, X\}, \tau_2 = \{\varphi, \{c\}, X\}$ and

 $Y = \{p, q\}, \sigma_1 = \{\varphi, Y, \{p\}\}, \sigma_2 = \{\varphi, Y, \{q\}\}$

Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a)=f(b)=p; f(c)=q

We have that (i, j)- αg closed sets of (X, τ_1, τ_2) are $\{\varphi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$

$$f^{-1}(p) = \{a, b\}; f^{-1}(q) = \{c\}$$
 are $(i, j) - \alpha g$ closed sets in (X, τ_1, τ_2)

Hence f is a (i, j)- αg continuous.

Also we have that (i, j)-vp closed sets are $\{\varphi, \{b\}, \{c\}, \{b, c\}, X\}$

 $f^{-1}(p) = \{a, b\}$ is not (i, j)-vp closed set in (X, τ_1, τ_2) .

Therefore f is not (i, j)-vp continuous.

Hence *f* is (i, j)- αg continuous but not (i, j)- νp continuous.

Proposition 4.14: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) - g^*p$ continuous then it is (i, j) - vp continuous.

Proof: Let *V* be a closed set in (Y, σ_1, σ_2) .

Then $f^{-1}(V)$ is (i, j)- g^*p closed and every (i, j)- g^*p closed set is (i, j)-vp closed.

Therefore $f^{-1}(V)$ is (i, j)-vp closed.

Hence f is (i, j)-vp continuous.

Remark 4.15: The converse of the above proposition need not be true as seen from the following example:

Example 4.16: Let $X = Y = \{a, b, c\}, \tau_1 = \{\varphi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\varphi, \{a\}, \{b, c\}, X\}$

 $\sigma_1 = \left\{ \varphi, Y, \left\{ b \right\} \right\}, \sigma_2 = \left\{ \varphi, Y, \left\{ a, c \right\} \right\}$

Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = \{a\}; f(b) = \{b\}; f(c) = \{c\}$

We have that (i, j)-vp closed sets of (X, τ_1, τ_2) are {All the subsets of X}

 $f^{-1}(a,c) = \{a,c\}; f^{-1}(b) = \{b\}$ are (i,j)-vp closed sets in (X, τ_1, τ_2)

Hence f is a (i, j)-vp continuous.

Also we have that (i, j)- g^*p closed sets are $\{\varphi, \{a\}, \{b, c\}, X\}$

 $f^{-1}(p) = \{a, c\}$ is not $(i, j) - g^* p$ closed set in (X, τ_1, τ_2) .

Therefore *f* is not (i, j)- g^*p continuous.

Hence *f* is (i, j)-vp continuous but not (i, j)- g^*p continuous.

Proposition 4.17: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(i, j) - \Psi$ continuous then it is $(i, j) - \nu p$ continuous.

Proof: Let *V* be a closed set in (Y, σ_1, σ_2) .

Then $f^{-1}(V)$ is (i, j)- Ψ closed and every (i, j)- Ψ closed set is (i, j)-vp closed.

Therefore $f^{-1}(V)$ is (i, j)-vp closed.

Hence f is (i, j)-vp continuous.

Remark 4.18: The converse of the above proposition need not be true as seen from the following example:

Example 4.19: Let $X = Y = \{a, b, c\}, \tau_1 = \{\varphi, \{b\}, \{b, c\}, X\}, \tau_2 = \{\varphi, \{ab\}, X\}$ and

$$\sigma_1 = \{\varphi, Y, \{a\}\}, \sigma_2 = \{\varphi, Y, \{b, c\}\}$$

Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = \{a\}; f(b) = \{b\}; f(c) = \{c\}$

We have that (i, j)-vp closed sets of (X, τ_1, τ_2) are $\{\varphi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$

$$f^{-1}(b,c) = \{b,c\}; f^{-1}(a) = \{a\}$$
 are (i,j) - vp closed sets in (X, τ_1, τ_2)

Hence f is a (i, j)-vp continuous.

Also we have that (i, j)- Ψ closed sets are { φ , {c}, {a, c}, X}

 $f^{-1}(b, c) = \{b, c\}$ is not $(i, j) - \Psi$ closed set in (X, τ_1, τ_2) .

Therefore f is not (i, j)- Ψ continuous.

Hence f is (i, j)-vp continuous but not (i, j)- Ψ continuous.

REFERENCES :

- 1. I.Arockiarani, studies on generalizations of generalized closed sets and maps in topological spaces, Ph.d., Thesis, Bharathiar Univ, Coimbatore, 1997.
- R.Devi,K.Balachandran and H.Maki,Generalized α-closed maps and α-generalized closed maps,Indian J.Pure.Appl.Math.,29(1)(1998),37-49
- 3. J.Dontchev on generalizing semi-preopen sets, Mem. Fec. sci. Kochi Univ. Ser. A. Math. 16(1995) 35-48
- 4. T.Fukutake, Bull.Fukuoka Univ.Ed.Part III 35(1985).19-28.
- 5. Fukutake.T,Sundaran.P,Nagaveni.N,On weakly generalized closed sets,weakly generalized continuous maps and Twg spaces in bitopological spaces, Bull. Fukuoka Univ.Ed.Part III,48(1999),33-40.
- 6. T.Fukutake, P.Sundaram and M.Sheik John, Bull. Fukuoka Univ.Ed.Part III, 51(2002), 1-9.
- 7. J.C.Kelly, Proc.London Math.Sci., 13(1963), 71-89
- 8. Levine.N,Generalized closed sets in topology,Rend.circ,math.Palermo,19(2)(1970),89-96.
- 9. A.S.Mashhour, M.E.Abd EI-Monsef and S.N.EI-Deeb, On Pre-continuous and weak pre continuous mapping proc.Math. and Phys.Soc.Egypt, 53(1982), 47-53.
- 10. Njastad.O,On some classes of nearly open sets, Pacific.J.Math., 15(1965), 961-970.
- 11. M.Pauline Mary Helen Ponnuthai Selvarani and S.Veronica Vijayan, g^{**} closed sets in topological spaces, IJMA, 3(5)(2012), 1-15
- 12. Priscilla Pacifica.M and Vani.S.V,(i, j)- $g^{##}$ closed sets in bitopological spaces.
- Rajamani.M and Viswanathan.K,On αgs-closed sets in bitopological spaces,Indian J.Pure.Appl.Sci.,vol.24E(No.1)(2005) 39-53.

- 14. Sheik John.M and Sundaram.P,Indian J.Pure Appl.Math.,35(1)(2004),71-80
- 15. Tantawy.O.A.E.I and H.M.Abu donia, generalized separation axioms in bitopologicalbspaces. The Arabian JI for science and Engg.Vol.30.No.1A(2005), 117-129
- 16. Vani.S.V., Priscilla Pacifica.G., (*i*, *j*)-vp closed sets in bitopological spaces, IJCRT-2017, volume5, ISSUE3, ISSN:2320-2882, Accepted.
- 17. VeeraKumar.M.K.R.S,mem.fac.sci.Kochi Univ(Math.),21(2000),1-19.
- 18. Veronica Vijayan, K. Reena, $g^{\#}$ semiclosed sets in Bitopological spaces (2012).

