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Abstract :  In this paper, the problem of delay-interval-dependent stability criteria for uncertain neural networks 

with successive time-varying delay components are studied. We construct a Lyapunov-Krasovskii function with 

triple and four integral terms and then utilizing Jenson’s inequality technique. Moreover, the proposed sufficient 

conditions can be simplified into the form of linear matrix inequalities (LMIs) using Matlab LMI toolbox. Finally, a 

numerical example is presented to illustrate the effectiveness of the proposed criteria. 
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I. INTRODUCTION 

Neural networks have been extensively studied in the past few decades because of their practical 

importance and have found successful applications in many engineering and scientific areas such as signal 

processing, pattern recognition, static image processing, fault diagnosis, associative memories, fixed-point 

computations, combinatorial optimization. Since the key feature of the applications are greatly, dependent on 

the property, of the equilibrium point of neural networks. For example, when designing a neural networks to 

solve optimization problems, the neural networks must have one unique and globally stable equilibrium 

point. A large number of important results on the dynamical behaviors have been reported for delayed neural 

networks (see [1]-[5] and the references therein). 

To analyze the stability of dynamical properties of neural networks, it is sometimes necessary to take 

account of time delays. In reality, time delay are inevitable in implementing an artificial neural networks as a 

result of the finite conduction velocity and switching speed of amplifier. Since the existence of the times delays 

is an important source of oscillation divergence, and instability in a system [6]-[8]. Therefore,  the stability  

of neural networks with time delay has become an important topic in many field. Depending on whether the 

stability criterion itself contains the size of delay, criterion for delayed neural network can be classified into 

two types, namely, delay-independent criteria [9]-[11] and delay-dependent criteria [12]-[15]. It is generally 

known that delay-dependent stability criteria are usually less conservative than delay-independent stability 

criteria especially for small size delays. Note that the delay-dependent stability results mentioned are based on 

systems with one single delay in the state. It is also well known that parameter uncertainty which can be 

commonly encountered because of the inaccuracies and changes in the environment of the model will break 

the stability of the systems. Recently, the problem on stability analysis of uncertain neural networks with 

delays has been extensively investigated (see [16, 17] and the references therein). 

Among most of the reported results on stability criteria for delayed neural networks, time delays have been 

in a singular or simple form in the state. Based on this, a new type of neural network model with additive time-

varying delay components has been introduced in [18]. This model has a strong application background in 

remote control and control system. For example, we consider a state-feedback networked control. Because the 

physical plant, controller, sensor, and actuator are located at different places, signals are transmitted from one 

device to another. There are essentially two kinds of network-induced delays: one from sensor to con- troller 

and the other from controller to actuator. Then, the closed loop system will appear with two additive time 

delays in the state. Thus, in the network transmission settings, two delays are usually time-varying with 

dissimilar properties. Therefore, the problem of stability analysis of neural networks with two successive time- 

varying delays in the state has been received much attention in recent years [19]-[25]. In [19] some new delay 

dependent stability criteria for neural networks with two additive time-varying delay components have been 

studied by using convex polyhedron method. By constructing a new Lyapunov-Krasovskii functional by using 

reciprocally convex method and convex polyhedron method, a new approaches on stability criteria for neural 
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networks with two additive time-varying delay components are derived in [20]. Tian et al. [21] proposed im- 

proved delay dependent stability criteria for neural networks with two additive time-varying delay components 

are less conservative because reciprocally convex approach and convex polyhedron approach are considered. 

Recently, [22, 23] improved stability criteria for generalized neural networks with additive time-varying delay 

components have been studied. By introducing some zero equations and using free-weighting matrix (FWM) 

based techniques and reciprocally convex combination based techniques. Very recently, the problem of stability 

criteria for a class of uncertain neural networks with additive time-varying delay have been derived in the work 

[24, 25]. Which is the main motivation of this paper. 

Motivated by the above discussions, a new delay dependent stability criteria for uncertain neural networks 

with time-varying delays and leakage delay is proposed in the paper. It is noted that two successive time-varying 

delay components are taken in the state. By constructing a suitable LyapunovKrasovskii functional with triple 

and four integral terms and by using Jenson’s lemma, a new delay-interval-dependent stability criterion is 

derived in terms of linear matrix inequalities to ensure the asymptotic stability of the equilibrium point of the 

considered neural networks. The derived criteria use the information of the upper delay bounds, which may 

lead to conservativeness. 

II. PROBLEM FORMULATION AND PRELIMINARIES  

Consider the following neural networks with successive time-varying delays: 

𝑥̇(𝑡) = −𝐶𝑥(𝑡) + 𝐴𝑔(𝑥(𝑡)) + 𝐵𝑔 (𝑥(𝑡 − 𝜏(𝑡))) + 𝐷 ∫ 𝑔(𝑥(𝑠))𝑑𝑠 + 𝑢

𝑡

𝑡−𝜎(𝑡)

                            (1) 

 Where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)]
𝑇 ∈ ℝ𝑛 is the state at time; 𝑔(𝑥(𝑡)) =

[𝑔1(𝑥1(𝑡)), 𝑔2(𝑥2(𝑡)), … , 𝑔𝑛(𝑥𝑛(𝑡))]
𝑇 ∈ ℝ𝑛  denotes the neuron activation function and u = [u1, u2, . . . , 

un]T∈ ℝ𝑛 is constant input vector. C = diag(c1, c2, , . . . , cn) is a diagonal matrix with ci > 0, i = 1, 2, , 
. . . , n and A, B and D the connection weight matrix, the discrete delayed connection weight matrix and the 

distributively delayed connection weight matrix: τ1(t), τ2(t) are continuous time-varying functions that 

represent the two delay components in the state, σ(t) is distributed delay, which satisfy 

0 ≤ τ1(t) ≤ τ1, 0 ≤ τ2(t) ≤ τ2, 0 ≤ σ(t) ≤ σ, 

where τ1, τ2, σ, µ1 and µ2 are constants. We denote 

τ (t) = τ1(t) + τ2(t), τ = τ1 + τ2 and µ = µ1 + µ2. 

τ̇1(t) ≤ µ1, τ̇2(t) ≤ µ2. (2) 

In addition, it is assumed that each neuron activation function in (1), yi( ), i = 1, 2, . . . , n satisfies the following 

condition: 

 

0 ≤
𝑔𝑖(𝑥) − 𝑔𝑖(𝑦)

𝑥 − 𝑦
≤ 𝑘𝑖 , 𝑥, 𝑦 ∈ ℝ, 𝑥 ≠ 𝑦, 𝑖 = 0,1,2, … , 𝑛                                                    (3) 

where ki, i = 1, 2, . . . , n are positive constants.  
 

In the following, the equilibrium point x∗ = (x∗
1 x∗

2 . . . x∗
n)T  of (1) is shifted to the origin by the transformation 

z(·) = x(·) − x∗ which converts the system to the following form 

𝑧̇(𝑡) = −𝐶𝑧(𝑡) + 𝐴𝑓(𝑧(𝑡)) + 𝐵𝑓 (𝑧(𝑡 − 𝜏(𝑡))) + 𝐷 ∫ 𝑓(𝑧(𝑠))𝑑𝑠

𝑡

𝑡−𝜎(𝑡)

                     (4) 

where z(·) = [z1(·), z2(·), . . . , zn(·)]T is the state vector of the transformed system, f (z(·)) = [f1(z1(·)), 
f2(z2(·)), . . . , fn(zn(·))]T  and fi(zi(·)) = gi(zi(·) + zi

∗) − gi(zi
∗), i = 1, 2, . . . , n.  Note that the functions 

fi(·), i = 1, 2, . . . , n satisfy the following condition. 

 

0 ≤
𝑓𝑖(𝑧𝑖)

𝑧𝑖
≤ 𝑘𝑖  𝑓𝑖(0)  𝑧𝑖 ≠ 0, 𝑖 = 0,1,2, … , 𝑛                       (5) 

which is equivalent to 

 

fi(zi)[fi(zi) − kizi] ≤ 0,  fi(0) = 0,  i = 1, 2, . . . , n.                     (6) 
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Lemma 2.1 [26] For a positive matrix M, scalars hU > hL > 0 such that the following integration are well 

defined, then it holds    that: 

−(ℎ𝑈 − ℎ𝐿) ∫ 𝑥𝑇(𝑠)𝑀𝑥(𝑠)𝑑𝑠 ≤ −( ∫ 𝑥(𝑠)𝑑𝑠

𝑡−ℎ𝑈

𝑡−ℎ𝐿

)

𝑇

𝑀( ∫ 𝑥(𝑠)𝑑𝑠

𝑡−ℎ𝑈

𝑡−ℎ𝐿

)

𝑡−ℎ𝑈

𝑡−ℎ𝐿

 

−
ℎ𝑈
2 − ℎ𝐿

2

2
∫ ∫𝑥𝑇(𝑢)𝑀𝑥(𝑢)𝑑𝑢𝑑𝑠

𝑡

𝑠

≤

𝑡−ℎ𝑈

𝑡−ℎ𝐿

− ( ∫ ∫𝑥(𝑢)𝑑𝑢𝑑𝑠

𝑡

𝑠

𝑡−ℎ𝑈

𝑡−ℎ𝐿

)

𝑇

𝑀( ∫ ∫𝑥(𝑢)𝑑𝑢𝑑𝑠

𝑡

𝑠

𝑡−ℎ𝑈

𝑡−ℎ𝐿

) 

−
ℎ𝑈
3 − ℎ𝐿

3

6
∫ ∫∫𝑥𝑇(𝑣)

𝑡

𝑢

𝑀𝑥(𝑣)𝑑𝑣𝑑𝑢𝑑𝑠

𝑡

𝑠

≤

𝑡−ℎ𝑈

𝑡−ℎ𝐿

− ( ∫ ∫∫𝑥(𝑣)𝑑𝑣𝑑𝑢𝑑𝑠

𝑡

𝑢

𝑡

𝑠

𝑡−ℎ𝑈

𝑡−ℎ𝐿

)

𝑇

𝑀( ∫ ∫∫𝑥(𝑣)𝑑𝑣𝑑𝑢𝑑𝑠

𝑡

𝑢

𝑡

𝑠

𝑡−ℎ𝑈

𝑡−ℎ𝐿

) 

Lemma 2.2 [27] Let H, E, and F(t) be real matrices of appropriate dimensions with F(t) satisfying  𝐹𝑇(𝑡)𝐹(𝑡) ≤
𝐼. Then, for any scalar 𝜖 > 0. 

𝐻𝐹(𝑡)𝐸 + (𝐻𝐹(𝑡)𝐸)𝑇 ≤ 𝜖−1𝐻𝐻𝑇 + 𝜖𝐸𝑇𝐸. 
Lemma 2.3 [28] Given constant matrices 𝑍1, 𝑍2, 𝑍3 where  𝑍1 = 𝑍1

𝑇  and𝑍2 = 𝑍2
𝑇  > 0. Then 𝑍1 + 𝑍3

𝑇𝑍2
−1𝑍3< 0 if 

and only if 

[
𝑍1 𝑍3

𝑇

𝑍3 −𝑍2
] > 0 (𝑜𝑟)  [

−𝑍2 𝑍3
𝑍3
−1 𝑍1

] > 0. 

III. MAIN RESULT  

  In this section, we investigated the stability criterion for neural networks with successive time-varying 

delay components. 

Theorem 3.1 For given scalars τ1, τ2, σ, µ1 and µ2 then system (4) and time-varying delay satisfying condition 

(2) is asymptotically stable if there exist 𝑃 = 𝑃𝑇 > 0, 𝑄𝐿 = 𝑄𝐿
𝑇 ≥ 0, (𝐿 = 1,2, … ,6) 𝑅𝑖 = 𝑅𝑖

𝑇 ≥ 0, (𝑖 = 1,2,3) 𝑆𝑗 =
𝑆𝑗
𝑇 ≥ 0, (𝑗 = 1,2,3) 𝑍 = 𝑍𝑇 ≥ 0, 𝑇𝑘 = 𝑇𝑘

𝑇 ≥ 0, (𝑘 = 1,2), 𝑈𝑚 = 𝑈𝑚
𝑇 ≥ 0, (𝑚 = 1,2), Λ = diag(λ1, λ2, . . . , 

λn)≤0, Λj = diag(λ1j, λ2j, . . . , λnj)≤0,  (j  = 1, 2) such that the linear matrix inequality (LMI): 

 

Ω22×22 < 0, (7) 

 

where 

Ω1,1 = 𝑄1 + 𝑄3 + 𝑄5 + 𝑅1 + 𝑅3 + 𝑅5 − 𝑆1 − 𝜏1
2𝑇1 + (𝜏2 − 𝜏1)

2𝑇2 − (
𝜏1
2

2
)
2

𝑈1 − (
𝜏2
2−𝜏1

2

2
)
2

𝑈2 − 𝐹1𝐶 − 𝐶𝐹1
𝑇, 

 Ω1,5 = 𝑆1,  Ω1,8 = 𝑃 + 𝐹1 − 𝐹2
𝑇𝐶, Ω1,9 = 𝐾Λ1+ 𝐹1𝐴,  Ω1,12 = 𝐹1𝐵,  Ω1,16 = 𝜏1𝑇1,  Ω1,17 = (𝜏2 − 𝜏1)𝑇2, 

 Ω1,18 = (𝜏2 − 𝜏1)𝑇2,  Ω1,19 = 𝐹1𝐷,  Ω1,20 = −𝑈1
𝜏1
2

2
, Ω1,21 = (

𝜏2
2−𝜏1

2

2
)𝑈2, Ω1,22 = (

𝜏2
2−𝜏1

2

2
)𝑈2, Ω2,2 = −(1 − 𝜇)𝑄1 

Ω3,3 = −(1 − 𝜇)𝑄3,  Ω4,4 = −(1 − 𝜇)𝑄5, Ω4,12 = 𝐾Λ2, Ω5,5 = −𝑅1 − 𝑆1 − 𝑆2, Ω5,6 = 𝑆2, Ω6,6 = −𝑅3 − 𝑆2, 

Ω7,7 = −𝑅5, Ω8,8 = 𝜏1
2𝑆1 + (𝜏2 − 𝜏1)

2𝑆2 − (
𝜏1
2

2
)
2

𝑇1 − (
𝜏2
2−𝜏1

2

2
)
2

𝑇2 + 𝐹2 + 𝐹2
𝑇 + −𝐹2𝐶 − 𝐶𝐹2

𝑇 ,  Ω8,9 = 𝐹2𝐴 + Λ, 

Ω8,12 = 𝐹2𝐵,  Ω8,19 = 𝐹2𝐷, Ω9,9 = 𝑄2 + 𝑄4 + 𝑄6 − 𝜎
2𝑆3 − Λ1 − Λ1

𝑇 + 𝑅2 + 𝑅4 + 𝑅6,  Ω10,10 = −(1 − 𝜇1)𝑄2,

Ω11,11 = −(1 − 𝜇2)𝑄4,  Ω12,12 = −(1 − 𝜇)𝑄6 − Λ2 − Λ2
𝑇 , Ω13,13 = −R2, Ω14,14 = −R4, Ω15,15 = −R6,  

Ω16,16 = −T1,  Ω17,17 = −T2, Ω17,18 = −T2, Ω18,18 = −T2, Ω19,19 = −S3, Ω20,20 = −U1, Ω21,21 = −U2

≤ 
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Ω21,22 = −U2, Ω22,22 = −U2. 

Proof. We choose the following Lyapunov-Krasovskii function: 

 

𝑉(𝑧(𝑡)) =∑𝑉𝑖(𝑧(𝑡))

6

𝑖=1

                                (8) 

where

𝑉1(𝑧(𝑡)) = 𝑧
𝑇(𝑡)𝑃𝑧(𝑡) + 2∑ 𝜆𝑖

𝑛
𝑖=1 ∫ 𝑓𝑖(𝑠)𝑑𝑠

𝑧𝑖
0

, 

𝑉2(𝑧(𝑡)) = ∫ [𝑧𝑇(𝑠)𝑄1𝑧(𝑠) + 𝑓
𝑇(𝑧(𝑠))𝑄2𝑓(𝑧(𝑠))]𝑑𝑠

𝑡

𝑡−𝜏1(𝑡)

+ ∫ [𝑧𝑇(𝑠)𝑄3𝑧(𝑠) + 𝑓
𝑇(𝑧(𝑠))𝑄4𝑓(𝑧(𝑠))]𝑑𝑠

𝑡

𝑡−𝜏2(𝑡)

 

                              + ∫ [𝑧𝑇(𝑠)𝑄5𝑧(𝑠) + 𝑓
𝑇(𝑧(𝑠))𝑄6𝑓(𝑧(𝑠))]𝑑𝑠

𝑡

𝑡−𝜏(𝑡)
, 

𝑉3(𝑧(𝑡)) = ∫ [𝑧𝑇(𝑠)𝑅1𝑧(𝑠) + 𝑓
𝑇(𝑧(𝑠))𝑅2𝑓(𝑧(𝑠))]𝑑𝑠

𝑡

𝑡−𝜏1

+ ∫ [𝑧𝑇(𝑠)𝑅3𝑧(𝑠) + 𝑓
𝑇(𝑧(𝑠))𝑅4𝑓(𝑧(𝑠))]𝑑𝑠

𝑡

𝑡−𝜏2

+ ∫[𝑧𝑇(𝑠)𝑅5𝑧(𝑠) + 𝑓
𝑇(𝑧(𝑠))𝑅6𝑓(𝑧(𝑠))]𝑑𝑠

𝑡

𝑡−𝜏

, 

𝑉4(𝑧(𝑡)) = 𝜏1 ∫ ∫ 𝑧̇𝑇(𝑠)𝑆1𝑧̇(𝑠)𝑑𝑠

𝑡

𝑡+θ

0

−𝜏1

+ (𝜏2 − 𝜏1) ∫ ∫ 𝑧̇𝑇(𝑠)𝑆2𝑧̇(𝑠)𝑑𝑠

𝑡

𝑡+θ

−𝜏1

−𝜏2

+ 𝜎 ∫ ∫ 𝑓𝑇(𝑧(𝑠))𝑆3𝑓(𝑧(𝑠))𝑑𝑠

𝑡

𝑡+θ

0

𝜎

 

𝑉5(𝑧(𝑡)) =
𝜏1
2

2
∫∫ ∫ 𝑧̇𝑇(𝑠)

𝑡

𝑡+𝜆

𝑇1𝑧̇(𝑠)𝑑𝑠𝑑𝜆𝑑𝜃

𝑡

𝜃

0

−𝜏1

+
(𝜏2

2 − 𝜏1
2
)

2
∫ ∫ ∫ 𝑧̇𝑇(𝑠)

𝑡

𝑡+𝜆

𝑇2𝑧̇(𝑠)𝑑𝑠𝑑𝜆𝑑𝜃

𝑡

𝜃

−𝜏1

−𝜏2

 

𝑉6(𝑧(𝑡)) =
𝜏1
3

6
∫∫∫ ∫ 𝑧̇𝑇(𝑠)

𝑡

𝑡+𝜅

𝑈1

0

𝜆

𝑧̇(𝑠)𝑑𝑠𝑑𝜅𝑑𝜆𝑑𝜃

0

𝜃

0

−𝜏1

+
(𝜏2

3 − 𝜏1
3
)

6
∫ ∫∫ ∫ 𝑧̇𝑇(𝑠)

𝑡

𝑡+𝜅

𝑈2

0

𝜆

𝑧̇(𝑠)𝑑𝑠𝑑𝜅𝑑𝜆𝑑𝜃

0

𝜃

−𝜏1

−𝜏2

 

Calculating the derivatives of Vi(z(t)), (i = 1, 2, . . . , 6) defined in (8) along the trajectories of 

 

𝑉̇(𝑧(𝑡)) =  ∑ 𝑉̇𝑖(𝑧(𝑡))

6

𝑖=1

                                                 (9) 

 

where 

 

𝑉̇1(𝑧(𝑡)) = 2𝑧
𝑇(𝑡)𝑃𝑧̇(𝑡) + 2∑ 𝜆𝑖

𝑛
𝑖=1 ∫ 𝑓𝑖(𝑠)𝑑𝑠

𝑧𝑖
0

             

𝑉̇1(𝑧(𝑡))  = 2𝑧
𝑇(𝑡)𝑃𝑧̇(𝑡) + 2𝜆 𝑓𝑇(𝑧(𝑡))𝑧̇(𝑡)        (10) 

 

𝑉̇2(𝑧(𝑡)) = 𝑧
𝑇(𝑡)[𝑄1 + 𝑄3 + 𝑄5]𝑧(𝑡) +  𝑓

𝑇(𝑧(𝑡))[𝑄2 + 𝑄4 + 𝑄6]𝑓(𝑧(𝑡))  
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                  −(1 − 𝜇1) [𝑧 
𝑇(𝑡 − 𝜏1(𝑡))𝑄1𝑧(𝑡 − 𝜏1(𝑡)) +  𝑓

𝑇 (𝑧(𝑡 − 𝜏1(𝑡))) 𝑄2𝑓 (𝑧(𝑡 − 𝜏1(𝑡)))]  

 

                  −(1 − 𝜇2) [𝑧 
𝑇(𝑡 − 𝜏2(𝑡))𝑄3𝑧(𝑡 − 𝜏2(𝑡)) +  𝑓

𝑇 (𝑧(𝑡 − 𝜏2(𝑡))) 𝑄4𝑓 (𝑧(𝑡 − 𝜏2(𝑡)))]  

 

                    −(1 − 𝜇) [𝑧 𝑇(𝑡 − 𝜏(𝑡))𝑄5𝑧(𝑡 − 𝜏(𝑡)) +  𝑓
𝑇 (𝑧(𝑡 − 𝜏(𝑡))) 𝑄6𝑓 (𝑧(𝑡 − 𝜏(𝑡)))]   (11) 

 

𝑉̇3(𝑧(𝑡)) = 𝑧
𝑇(𝑡)[𝑅1 + 𝑅3 + 𝑅5]𝑧(𝑡) − 𝑧 

𝑇(𝑡 − 𝜏1)𝑅1𝑧(𝑡 − 𝜏1)  −𝑧 
𝑇(𝑡 − 𝜏2)𝑅3𝑧(𝑡 − 𝜏2) − 𝑧 

𝑇(𝑡 −

                      𝜏3)𝑅5𝑧(𝑡 − 𝜏3) +  𝑓
𝑇(𝑧(𝑡))[𝑅2 + 𝑅4 + 𝑅6]𝑓(𝑧(𝑡)) −  𝑓

𝑇(𝑧(𝑡 − 𝜏1))𝑅2𝑓(𝑧(𝑡 − 𝜏1)) −

                     𝑓𝑇(𝑧(𝑡 − 𝜏2))𝑅4𝑓(𝑧(𝑡 − 𝜏2)) −  𝑓
𝑇(𝑧(𝑡 − 𝜏))𝑅6𝑓(𝑧(𝑡 − 𝜏))     (12) 

 

𝑉̇4(𝑧(𝑡)) = 𝜏1
2[𝑧̇𝑇(𝑡)𝑆1𝑧̇(𝑡)] − 𝜏1 ∫ 𝑧̇𝑇(𝑡)𝑆1𝑧̇(𝑡)𝑑𝑠

𝑡

𝑡−𝜏1(𝑡)
     +(𝜏2 − 𝜏1)

2[𝑧̇𝑇(𝑡)𝑆1𝑧̇(𝑡)] − (𝜏2 −

                     𝜏1) ∫ 𝑧̇𝑇(𝑠)𝑆2𝑧̇(𝑠)𝑑𝑠
𝑡−𝜏2
𝑡−𝜏1

+ 𝜎2[𝑓𝑇(𝑧(𝑡))𝑆3𝑓(𝑧(𝑡))] − 𝜎 ∫ 𝑓𝑇(𝑧(𝑠))𝑆3𝑓(𝑧(𝑠))𝑑𝑠
𝑡

𝑡−𝜎
  (13) 

 

By applying lemma 2.1, we have 

 

𝑉̇4(𝑧(𝑡)) = 𝜏1
2[𝑧̇𝑇(𝑡)𝑆1𝑧̇(𝑡)] − [𝑧(𝑡) − 𝑧(𝑡 − 𝜏1)]

𝑇𝑆1[𝑧(𝑡) − 𝑧(𝑡 − 𝜏1)] + (𝜏2 − 𝜏1)
2[𝑧̇𝑇(𝑡)𝑆2𝑧̇(𝑡)] 

 

−[𝑧(𝑡 − 𝜏1) − 𝑧(𝑡 − 𝜏2)]
𝑇𝑆2[𝑧(𝑡 − 𝜏1) − 𝑧(𝑡 − 𝜏2)] + 𝜎

2[𝑓𝑇(𝑧(𝑡))𝑆3𝑓(𝑧(𝑡))] 

 

−( ∫ 𝑓(𝑧(𝑠))𝑑𝑠

𝑡

𝑡−𝜎

)

𝑇

𝑆3 ( ∫ 𝑓(𝑧(𝑠))𝑑𝑠

𝑡

𝑡−𝜎

)                                                                                  (14) 

𝑉̇5(𝑧(𝑡)) =
𝜏1
2

2
[𝑧̇𝑇(𝑡)𝑇1𝑧̇(𝑡)] [

−𝜏1
2

2
] −

𝜏1
2

2
∫ ∫[𝑧̇𝑇(𝑠)𝑇1𝑧̇(𝑠)]𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

0

−𝜏1

+ (
𝜏2
2 − 𝜏1

2

2
)

2

[𝑧̇𝑇(𝑡)𝑇2𝑧̇(𝑡)] 

 

−(
𝜏2
2 − 𝜏1

2

2
) ∫ ∫[𝑧̇𝑇(𝑠)𝑇2𝑧̇(𝑠)]𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

−𝜏1

−𝜏2

                                                                 (15) 

 

By applying lemma 2.1, we have 

𝑉̇5(𝑧(𝑡)) = (
𝜏1
2

2
)

2

[𝑧̇𝑇(𝑡)𝑇1𝑧̇(𝑡)] − ( ∫ ∫ 𝑧̇(𝑠)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

0

−𝜏1

)

𝑇

𝑇1 ( ∫ ∫ 𝑧̇(𝑠)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

0

−𝜏1

) 

 

+(
𝜏2
2 − 𝜏1

2

2
)

2

[𝑧̇𝑇(𝑡)𝑇2𝑧̇(𝑡)] − ( ∫ ∫ 𝑧̇(𝑠)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

−𝜏1

−𝜏2

)

𝑇

𝑇2 ( ∫ ∫ 𝑧̇(𝑠)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

−𝜏1

−𝜏2

) 

 

𝑉̇5(𝑧(𝑡)) = (
𝜏1
2

2
)
2

[𝑧̇𝑇(𝑡)𝑇1𝑧̇(𝑡)] − (𝜏1𝑧(𝑡) − ∫ 𝑧(𝑠)𝑑𝑠
𝑡

𝑡−𝜏1
)
𝑇

𝑇1 (𝜏1𝑧(𝑡) − ∫ 𝑧(𝑠)𝑑𝑠
𝑡

𝑡−𝜏1
)  
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+(
𝜏2
2 − 𝜏1

2

2
)

2

[𝑧̇𝑇(𝑡)𝑇2𝑧̇(𝑡)] − [(𝜏2 − 𝜏1)𝑧(𝑡) − ∫ 𝑧(𝑠)𝑑𝑠 − ( ∫ 𝑧(𝑠)𝑑𝑠

𝑡−𝜏(𝑡)

𝑡−𝜏2

)

𝑡−𝜏1

𝑡−𝜏(𝑡)

]

𝑇

𝑇2 

× [(𝜏2 − 𝜏1)𝑧(𝑡) − ∫ 𝑧(𝑠)𝑑𝑠 − ( ∫ 𝑧(𝑠)𝑑𝑠

𝑡−𝜏(𝑡)

𝑡−𝜏2

)

𝑡−𝜏1

𝑡−𝜏(𝑡)

]                                        (16) 

 

𝑉̇6(𝑧(𝑡)) = (
𝜏1
3

6
)
2

[𝑧̇𝑇(𝑡)𝑈1𝑧̇(𝑡)] − (∫ ∫ ∫ 𝑧̇(𝑠)
𝑡

𝑡+𝜃
𝑑𝑠𝑑𝜆𝑑𝜃

0

𝜃

0

−𝜏1
)
𝑇

𝑈1 (∫ ∫ ∫ 𝑧̇(𝑠)
𝑡

𝑡+𝜃
𝑑𝑠𝑑𝜆𝑑𝜃

0

𝜃

0

−𝜏1
)  

 

(
(𝜏2

3−𝜏1
3
)

6
)
2

[𝑧̇𝑇(𝑡)𝑈2𝑧̇(𝑡)] − (∫ ∫ ∫ 𝑧̇(𝑠)
𝑡

𝑡+𝜆
𝑑𝑠𝑑𝜆𝑑𝜃

0

𝜃

−𝜏1
−𝜏2

)
𝑇

𝑈2 × (∫ ∫ ∫ 𝑧̇(𝑠)
𝑡

𝑡+𝜆
𝑑𝑠𝑑𝜆𝑑𝜃

0

𝜃

−𝜏1
−𝜏2

)   

 

= (
𝜏1
3

6
)

2

[𝑧̇𝑇(𝑡)𝑈1𝑧̇(𝑡)] − (
𝜏1
2

2
𝑧𝑇(𝑡) − ∫ ∫ 𝑧𝑇(𝑡)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

0

−𝜏1

)𝑈1 (
𝜏1
2

2
𝑧𝑇(𝑡) − ∫ ∫ 𝑧𝑇(𝑡)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

0

−𝜏1

) 

+[
(𝜏2

2 − 𝜏1
2
)

2
𝑧(𝑡) − ∫ ∫ 𝑧(𝑠)𝑑𝑠𝑑𝜃 − ∫ ∫ 𝑧(𝑠)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

−𝜏(𝑡)

−𝜏2

𝑡

𝑡+𝜃

−𝜏1

−𝜏(𝑡)

]

𝑇

𝑈2 

 

× [
(𝜏2

2 − 𝜏1
2
)

2
𝑧(𝑡) − ∫ ∫ 𝑧(𝑠)𝑑𝑠𝑑𝜃 − ∫ ∫ 𝑧(𝑠)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

−𝜏(𝑡)

−𝜏2

𝑡

𝑡+𝜃

−𝜏1

−𝜏(𝑡)

] 

 

On the other hand, it is clear from (6) that 

𝑓𝑖(𝑧𝑖(𝑡))[𝑓𝑖(𝑧𝑖(𝑡)) − 𝐾𝑖(𝑧𝑖(𝑡))] ≤ 0 , 𝑖 = 1,2, … . , 𝑛 

 

And  

 

𝑓𝑖 (𝑧𝑖(𝑡 − 𝜏(𝑡))) [𝑓𝑖 (𝑧𝑖(𝑡 − 𝜏(𝑡))) − 𝐾𝑖 (𝑧𝑖(𝑡 − 𝜏(𝑡)))] ≤ 0 , 𝑖 = 1,2, … . , 𝑛 

 

Thus, for any Λ𝑗 = 𝑑𝑖𝑎𝑔(𝜆1𝑗 , 𝜆2𝑗 , … . , 𝜆𝑛𝑗) ≥ 0, 𝑗 = 1,2. 

 

0 ≤ −2∑𝑡𝑖1

𝑛

𝑖=1

𝑓𝑖(𝑧𝑖(𝑡))[𝑓𝑖(𝑧𝑖(𝑡)) − 𝐾𝑖(𝑧𝑖(𝑡))]

− 2∑𝑡𝑖2𝑓𝑖 (𝑧𝑖(𝑡 − 𝜏(𝑡))) [𝑓𝑖 (𝑧𝑖(𝑡 − 𝜏(𝑡))) − 𝐾𝑖 (𝑧𝑖(𝑡 − 𝜏(𝑡)))]

𝑛

𝑖=1

 

 

= 2𝑧𝑇(𝑡)𝐾𝑇1𝑓(𝑧(𝑡)) − 2𝑓
𝑇(𝑧(𝑡))𝑇1𝑓(𝑧(𝑡)) + 2𝑧

𝑇(𝑡 − 𝜏(𝑡))𝐾𝑇2𝑓 (𝑧(𝑡 − 𝜏(𝑡)))  

−2𝑓𝑇 (𝑧(𝑡 − 𝜏(𝑡))) 𝑇1𝑓 (𝑧(𝑡 − 𝜏(𝑡)))        (17) 

On the other hand for any matrices U1 and U2 with appropriate dimensions, it is true that 

0 = 2[𝑧𝑇(𝑡)𝑈1 + 𝑧̇
𝑇(𝑡)𝑈2] [𝑧̇(𝑡) − 𝑧(𝑡) + 𝐴𝑓(𝑧(𝑡)) + 𝐵𝑓 (𝑧(𝑡 − 𝜏(𝑡))) + 𝐷 ∫ 𝑓(𝑧(𝑠))𝑑𝑠

𝑡

𝑡−𝜎(𝑡)
] . (18) 

Substituting (10)-(18) into (9), we have 
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𝑉̇(𝑧(𝑡)) = 𝜉𝑇(𝑡)Ω𝜉(𝑡)                                          (19) 

 

where 

𝜉𝑇(𝑡) = [𝑧𝑇(𝑡)𝑧𝑇(𝑡 − 𝜏1(𝑡))𝑧
𝑇(𝑡 − 𝜏2(𝑡))𝑧

𝑇(𝑡 − 𝜏(𝑡))𝑧𝑇(𝑡 − 𝜏1)𝑧
𝑇(𝑡 − 𝜏2) 

 

𝑧𝑇(𝑡 − 𝜏)𝑧̇𝑇(𝑡)𝑓𝑇(𝑧(𝑡))𝑓𝑇 (𝑧(𝑡 − 𝜏1(𝑡))) 𝑓
𝑇 (𝑧(𝑡 − 𝜏2(𝑡))) 

 

𝑓𝑇 (𝑧(𝑡 − 𝜏(𝑡))) 𝑓𝑇(𝑧(𝑡 − 𝜏1))𝑓
𝑇(𝑧(𝑡 − 𝜏2))𝑓

𝑇(𝑧(𝑡 − 𝜏)) ∫ 𝑧𝑇(𝑠)𝑑𝑠

𝑡

𝑡−𝜏1

 

 

∫ 𝑧𝑇(𝑠)𝑑𝑠

𝑡−𝜏1

𝑡−𝜏(𝑡)

∫ 𝑧𝑇(𝑠)𝑑𝑠

𝑡−𝜏(𝑡)

𝑡−𝜏2

∫ 𝑓𝑇(𝑧(𝑠))𝑑𝑠

𝑡

𝑡−𝜎

∫ ∫ 𝑧𝑇(𝑡)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

0

−𝜏1

 

 

∫ ∫ 𝑧𝑇(𝑠)𝑑𝑠𝑑𝜃 ∫ ∫ 𝑧𝑇(𝑠)𝑑𝑠𝑑𝜃

𝑡

𝑡+𝜃

−𝜏(𝑡)

−𝜏2

𝑡

𝑡+𝜃

−𝜏1

−𝜏(𝑡)

 ] ,  

 

According to (7), we have 𝑉̇(𝑧(𝑡)) < 0. Therefore, we obtain 𝑉̇(𝑧(𝑡)) < −𝜀‖𝑧(𝑡)‖2 for a sufficient small 

ε > 0, which means the system in (4) is asymptotically stable and the proof is completed. 

 

IV STABILITY CRITERIA FOR UNCERTAIN SYSTEM 

In this section, based on Theorem 3.1, we are now ready to develop delay-interval-dependent stability 

criterion for the neural networks with time-varying parameters uncertainties. Now, we consider the following 

uncertain neural networks as: 

𝑧̇(𝑡) = −(𝐶 + ∆(𝑡))𝑧(𝑡) + (𝐴 + ∆𝐴(𝑡))𝑓(𝑧(𝑡)) + (𝐵 + ∆𝐵(𝑡))𝑓 (𝑧(𝑡 − 𝜏(𝑡))) 

+(𝐷 + ∆𝐷(𝑡)) ∫ 𝑓(𝑧(𝑠))𝑑𝑠

𝑡

𝑡−𝜎(𝑡)

                                                      (20) 

Where ∆C(t), ∆A(t), ∆B(t) and ∆D(t) are the time-varying parameters uncertainties. Which are assumed to 

be of the form 

[∆𝐴(𝑡)∆𝐵(𝑡)∆𝐶(𝑡)∆𝐷(𝑡)] = 𝐻𝐹(𝑡)[𝐸1𝐸2𝐸3𝐸4] 

where H and Ei, i=1,2,3,4 are known real constant matrices, and F(·) is an unknown time varying matrix 

function satisfying F(t)T F(t) ≤ I. Based on Theorem 3.1, the following criterion can be readily derived. 

 

Theorem 4.1 For given scalars τ1, τ2, σ, µ1 and µ2 then system (4) and time-varying delay satisfying condition 

(2) is asymptotically stable if there exist 𝑃 = 𝑃𝑇 > 0, 𝑄𝐿 = 𝑄𝐿
𝑇 ≥ 0, (𝐿 = 1,2, … ,6) 𝑅𝑖 = 𝑅𝑖

𝑇 ≥ 0, (𝑖 = 1,2,3) 𝑆𝑗 =
𝑆𝑗
𝑇 ≥ 0, (𝑗 = 1,2,3) 𝑍 = 𝑍𝑇 ≥ 0, 𝑇𝑘 = 𝑇𝑘

𝑇 ≥ 0, (𝑘 = 1,2), 𝑈𝑚 = 𝑈𝑚
𝑇 ≥ 0, (𝑚 = 1,2), Λ = diag(λ1, λ2, . . . , 

λn)≤0, Λj = diag(λ1j, λ2j, . . . , λnj)≤0,  (j  = 1, 2) here exists scalar ϵ such 

that the linear matrix inequality(LMI). 

 

 

 

[
Ω + ϵΘ2

𝑇 Θ1
𝑇

Θ1 −𝜖𝐼
] < 0 ,                                    (21) 

Where 

Θ1 = [F1𝐻     0
14𝑡𝑖𝑚𝑒𝑠⏟      ]

𝑇

 

[−E1   07𝑡𝑖𝑚𝑒𝑠⏟    E2   0 0 E3   09𝑡𝑖𝑚𝑒𝑠⏟    E4 0 0 0]
𝑇
 

and Ω is defined in Theorem 3.1. 

 

http://www.jetir.org/


© 2018 JETIR August 2018, Volume 5, Issue 8                                  www.jetir.org  (ISSN-2349-5162)  

JETIR1808303 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 44 

     

Proof: Replacing A, W, W1, W2, W3, in LMI (8) with C + HF(t)E1, A + HF(t)E2, B + HF(t)E3 and 

D + HF(t)E4, yields 

Ω + Θ1
𝑇𝐹(𝑡)Θ2 + Θ2

𝑇𝐹(𝑡)Θ1 < 0                                        (22) 

Applying Lemma 2.2, it can be deduced that for ε > 0 

 

Ω + ε−1Θ1
𝑇Θ1 + εΘ2

𝑇𝐹(𝑡)Θ1 < 0                                      (23) 

which is equivalent to (21) in the sense of the Schur complement [28]. The proof is completed.  

 

V. Numerical Example 

In this section, we list some illustrative example to demonstrate the less conservatism of our result and the 

effectiveness of the proposed method. 

 

Example 4.1 Consider system (4) with the following parameters: 

 

𝐶 = [
1.9 0
0 1.2

] , 𝐴 = [
0.8 −0.2
0.1 0.3

] , 𝐵 = [
0.5 0.2
−0.2 −0.1

] , 𝐷 = [
0.05 0.2
0.2 0.1

]

we assume τ1 = 1.8, τ2 = 2.5, σ = 1.5, µ1 = 0.2 and µ2 = 0.5 by using Matlab LMI toolbox, it is found that LMI (7) 

is feasible. The simulation results for the above-mentioned delay values also ensure the asymptotic stability of the 

model (4). Fig. 1 

 

 

 

    Figure 1: State trajectory of the system (4) in Example 4.1 
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IV.  CONCLUSION  

In this paper, delay-interval-dependent stability criteria for neural networks with successive time-varying delay components as 

well as generalized activation functions. By employing a combination of Lyapunov functional, the Jenson’s inequality technique, 

several delay-interval-dependent criteria for checking the stability criteria of the addressed neural networks have been established in 

terms of linear matrix inequalities. Finally, a numerical example is presented to illustrate the effectiveness of the proposed criteria. 
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