Efficient Strong (Weak) Dominating (y,eD)-Number of Graphs

A.Mahalakshmi¹, K.Palani², and S.Somasundaram³

¹Assistant Professor, Department of Mathematics, Sri Sarada College for Women,

Tirunelveli- 627011, Affiliated to Manonmaniam Sundaranar University, Abishekapati, Tirunelveli – 627012, Tamil Nadu, India.

²Associate Professor Department of Mathematics, A.P.C.Mahalaxmi College for Women, Thoothukudi - 628002, Affiliated to

Manonmaniam Sundaranar University, Abishekapati, Tirunelveli – 627012, Tamilnadu, India.

³Professor, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India.

Abstract : In this paper, we introduce the new concept of efficient strong (weak) dominating (γ ,eD)-number of graphs. Also, this number is found for some standard graphs, subdivision graphs.

Keywords: Edge Detour, Edge detour domination, efficient strong (weak) dominating (γ ,eD)- number

1. Introduction: The concept of domination was introduced by Ore and Berge[8]. Let G be a finite, undirected connected graph with neither loops nor multiple edges. A subset D of V(G) is a dominating set of G if every vertex in V-D is adjacent to atleast one vertex in D. The minimum cardinality among all dominating sets of G is called the domination number $\gamma(G)$ of G. We consider connected graphs with atleast two vertices. A set of vertices is independent if no two vertices are adjacent. A regular spanning subgraph of degree 1 is called 1-factor (1F). A subdivision of an edge e = uv of a graph G is the replacement of the edge e by a path {u, v, w}. If every edge of G is subdivided exactly once, then the resulting graph is called the subdivision graph S(G). For basic definitions and terminologies, we refer Harary[1].

For vertices u and v in a connected graph G, the detour distance D(u,v) is the length of longest u-v path in G. A u-v path of length D(u,v) is called a u-v detour. A subset S of V is called a detour set if every vertex in G lies on a detour joining a pair of vertices of S. The detour number dn(G) of G is the minimum order of a detour set and any detour set of order dn(G) is called a detour basis of G. These concepts were studied by Chartrand[3].

A subset S of V(G) is called an edge detour set of G if every edge in G lie on a detour joining a pair of vertices of S. The edge detour number $dn_1(G)$ of G is the minimum order of its edge detour sets and any edge detour set of order dn_1 is an edge detour basis. A graph G is called an edge detour graph if it has an edge detour set. Edge detour graph were introduced and studied by Santhkumaran and Athisayanathan[11]. A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every $v \in V(G)$, $|\mathbf{N}_{s}[\mathbf{v}] \cap \mathbf{S}| = 1(|\mathbf{N}_{w}[\mathbf{v}] \cap \mathbf{S}| = 1), \text{ where } \mathbf{N}_{s}(\mathbf{v}) = \{\mathbf{u} \in \mathbf{V}(\mathbf{G}): \mathbf{u}\mathbf{v} \in \mathbf{E}(\mathbf{G}), \deg(\mathbf{u}) \geq \deg(\mathbf{v})\}, (\mathbf{N}_{w}(\mathbf{v}) = \{\mathbf{u} \in \mathbf{V}(\mathbf{G}): \mathbf{u}\mathbf{v} \in \mathbf{E}(\mathbf{G}), \deg(\mathbf{v}) \geq \log(\mathbf{v})\}$ deg(u)}). The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient number and is denoted by $\gamma_{se}(G)$ ($\gamma_{we}(G)$). A graph G is a strong(weak) efficient domination graph if and only if there exists a strong(weak) efficient dominating set of G. Strong(weak) efficient dominating graphs were introduced and studied by N.Meena, A.Subramanian, V.Swaminathan[7]. An edge detour dominating set is a subset S of V(G) which is both dominating and an edge detour set of G. An edge detour dominating set is said to be a minimal edge detour dominating set of G if no proper subset of S is an edge detour dominating set of G.

An edge detour dominating S is said to be minimum edge detour dominating set of G if there exist no edge detour dominating set S' such that $|S'| \leq |S|$. The smallest cardinality of an edge detour dominating set of G is called the edge detour domination number of G. It is denoted by $\gamma_{eD}(G)$. Any edge detour dominating set S of G of minimum cardinality $\gamma_{eD}(G)$ is called a γ_{eD} - set of G. are Edge detour dominating graphs were studied by Mahalakshmi.A, Palani.K and Somasundaram.S[5].

The following results are from [4].

Theorem 1.1: The domination numbers of some standard graph are given as follows.

1.
$$\gamma(P_p) = \left| \frac{p}{3} \right|, p \ge 3$$

2. $\gamma(C_p) = \left\lceil \frac{p}{3} \right\rceil, p \ge 3$
3. $\gamma(K_p) = \gamma(W_p) = \gamma(K_{1,n}) = 1$.
4. $\gamma(K_{m,n}) = 2$ if $m, n \ge 2$.

The following are from Sampathkumar.E and Pushpa Latha .L,[10].

Definition 1.2: A subset S of V(G) is called a strong dominating set of G if for every $v \in V$ -S there exists $u \in S$ such that u and v are adjacent and $deg(u) \ge deg(v)$.

The following results are from [5].

Remark 1.3:

1. $\gamma_{eD}(G) \ge dn_1(G)$ and $\gamma_{eD}(G) \ge \gamma(G)$.

2. If the set of all pendant vertices of a graph G forms an edge detour dominating set S of G, then S is the unique minimum edge detour dominating set of G.

Theorem 1.4: $\gamma_{eD}(K_{1,n}) = n$.

Theorem 1.5:
$$\gamma_{eD}(P_n) = \begin{cases} \left| \frac{n-4}{3} \right| + 2 & \text{if } n \ge 5; \\ 2 & \text{if } n = 2,3 \text{ or } 4. \end{cases}$$

Theorem 1.6: For $n > 5$, $\gamma_{eD}(C_n) = \left\lceil \frac{n}{3} \right\rceil$.

The following are from Mahalakshmi.A, Palani.K and Somasundaram.S[6]

Definition 1.7: Let G be a connected graph. An efficient dominating (γ ,eD)-set of G is an edge detour dominating set of G such that for every $v \in V(G)$, $|N[v] \cap S_i| = 1$. The minimum cardinality of among all efficient dominating (γ ,eD) is the efficient dominating (γ ,eD)-number of G and is denoted by $e_{\gamma_{eD}}(G)$. An efficient dominating (γ ,eD)-set of minimum cardinality $e_{\gamma_{eD}}(G)$ is called a $e_{\gamma_{eD}}$ -set of G. A graph G is said to be an efficient dominating (γ , eD)-graph if it has an efficient dominating (γ ,eD)-set.

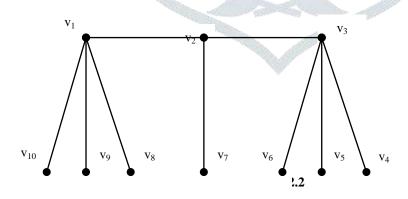
2. Efficient Strong (Weak) Dominating (y,eD)-Number of Graph

Definition 2.1: Let G = (V, E) be a simple graph. A subset S of V(G) is called an efficient strong (weak) dominating (γ ,eD)-set of G if for every $v \in V(G)$, $|N_s[v] \cap S| = 1$ ($|N_w[v] \cap S| = 1$), where $N_s(v) = \{u \in V(G): uv \in E(G), \deg(u) \ge \deg(v)\}$ ($N_w(v) = \{u \in V(G): uv \in E(G), \deg(v) \ge \deg(v)\}$). The minimum cardinality of an efficient strong (weak) dominating (γ ,eD)-set of G is called the efficient strong (weak) dominating (γ ,eD)-number of G and it denoted by $es\gamma_{eD}(G)$ ($ew\gamma_{eD}(G)$). A graph G is an efficient strong (weak) dominating (γ ,eD)-graph if and only if there exists an efficient strong (weak) dominating (γ ,eD)-set of G. **Example 2.2:**

v₆ v₂ v₂ v₃ Figure 2.1

Here, $S = \{v_3, v_6\}$ is an efficient strong dominating (γ, eD) -set of G. Hence, $es\gamma_{eD}(G) = 2$. In this graph, $\gamma_s(G) = \gamma_{eD}(G) = e\gamma_{eD}(G) = es\gamma_{eD}(G) = ew\gamma_{eD}(G) = 2$.

Remark 2.3: All (γ ,eD)-graph need not be an efficient strong (weak) dominating (γ ,eD)-graph.



Here, $S = \{v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}$ is a (γ, eD) -set. Therefore, $\gamma_{eD}(G) = 7$. But, it is not an efficient strong (weak) dominating (γ, eD) -set. Since, $|N_s[v] \cap S| \neq 1$ ($|N_w[v] \cap S| \neq 1$).

Remark 2.4:

- 1. Not all graph admit efficient strong (weak) dominating (γ ,eD)-set.
- 2. If $es\gamma_{eD}(ew\gamma_{eD})$ -set exists then (γ,eD) -set and $es\gamma_{eD}(ew\gamma_{eD})$ -set are equal.
- 3. If a regular graph G is an efficient dominating (γ,eD) -graph, then G is obviously an efficient strong (weak) dominating (γ,eD) -graph.

Therefore, $es\gamma_{eD}(G) = ew\gamma_{eD}(G) = e\gamma_{eD}(G)$. For, $N_s[v] = N_w[v] = N[v]$ for every $v \in G$, where G is regular.

© 2018 JETIR August 2018, Volume 5, Issue 8

Lemma 2.5: For cycle C_n , $n \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$, there is no efficient dominating (γ ,eD)-set. **Proof:** Let $C_n = \{v_1, v_2, v_3, ..., v_1\}.$ **Case 1:** $n \equiv 1 \pmod{3}$ The graph C_n has more than one (γ ,eD)-set. In each set, there exists elements u and v such that, d(u,v) = 1 or d(u,v) = 2. Sub Case 1a: d(u,v) = 1Let $u, v \in S_i$ where S_i is one of the (γ, eD) -sets of C_n . Therefore, $|N[u] \cap S_i| \neq 1$ and $|N[v] \cap S_i| \neq 1$. Therefore, C_n has no efficient dominating (γ, eD)-set. **Sub Case 1b:** d(u,v) = 2Let u, $v \in S_i$ where S_i is one of the (γ, eD) -sets of C_n . Let $w \in C_n$ be the vertex which lies between u and v. Then, $|N[w] \cap S_i| \neq 1$. Therefore, C_n has no efficient dominating (γ,eD) -set. Case 2: $n \equiv 2 \pmod{3}$ **Sub Case 2a:** n = 5 Here the cycle is C_5 and every (γ ,eD)-set of C_5 contains a pair of adjacent vertices. Therefore, C_5 has no efficient dominating (γ ,eD)-set. **Sub Case 2b:** n > 5 Here, C_n has more than one (γ, eD) -set. In each set, there exists elements u and v such that d(u,v) = 2. Let $u,v \in S_i$ where S_i is one of the (γ,eD) -sets of C_n . Let $w \in C_n$ be the vertex which lies between u and v. Then, $|N[w] \cap S_i| \neq 1$. Therefore, C_n has no efficient dominating (γ,eD) set. **Lemma 2.6:** For path P_n , $n \equiv 0 \pmod{3}$ and $n \equiv 2 \pmod{3}$, there are no efficient dominating (γ, eD) -graphs. **Proof:** Let $P_n = \{v_1, v_2, v_3, ..., v_n\}.$ **Case i:** $n \equiv 0 \pmod{3}$ Then, n = 3k, k > 0In this case, P_n has more than one (γ ,eD)-set. In each set any one of the vertices v_2 , v_5 , v_8 , ..., v_{n-1} does not satisfy the condition $|N[v] \cap S| = 1$ 1. Therefore, P_n , $n \equiv 0 \pmod{3}$ has no efficient dominating (γ ,eD)-set. **Case ii:** $n\equiv 2 \pmod{3}$ Then, n = 3k + 2, k > 0In this case also, P_n has more than one (γ ,eD)-set. In each set any one of the vertices v_2 , v_4 , v_7 ,..., v_{n-1} does not satisfy the condition $|N[v] \cap S$ |=1.Therefore, P_n , $n \equiv 2 \pmod{3}$ has no efficient dominating (γ ,eD)-set. **Theorem 2.7:** Every efficient strong dominating (γ, eD) -set of a graph G is independent. **Proof:** Let S be an efficient strong dominating (γ ,eD)-set of a graph G. Suppose u, $v \in S$ such that u and v are adjacent. Then, either $|N_s[u] \cap S| \neq 1$ or $|N_s[v] \cap S| \neq 1$. Therefore, S is not an efficient strong dominating (γ , eD)-set of G, which is a contradiction. Hence, S is independent. **Theorem 2.8:** Every efficient weak dominating (γ, eD) -set is independent. **Proof:** The proof is similar to the proof of Theorem 2.7. **Theorem 2.9:** For cycle C_{3n} , $es\gamma_{eD}(C_{3n}) = ew\gamma_{eD}(C_{3n}) = n$ for all n > 1. **Proof:** Let $G=C_{3n}$, n>1 and $V(G)=\{v_1, v_2, ..., v_{3n}\}$. The (γ, eD) -set of C_n are $S_1=\{v_1, v_4, v_7, ..., v_{3n-2}\}$; $S_2 = \{v_2, v_5, v_8, ..., v_{3n-1}\}$; $S_3 = \{v_1, v_2, ..., v_{3n}\}$. $\{v_3, v_6, v_9, \dots, v_{3n}\}$. And it can be easily verified that $|N_s[v] \cap S_i| = 1$ and $|N_w[v] \cap S_i| = 1$ for all $v \in C_{3n}$ and i = 1, 2, 3. Hence, S_i , i=1,2,3 are efficient strong and weak dominating (γ ,eD)-sets of C_{3n}. Therefore, the cycle C_{3n} is an efficient strong and weak dominating (γ ,eD)-graph and $es\gamma_{eD}(C_{3n}) = ew\gamma_{eD}(C_{3n}) = \gamma_{eD}(C_{3n})$. Hence, by Theorem 1.7, $es\gamma_{eD}(C_{3n}) = ew\gamma_{eD}(C_{3n})$ **Theorem 2.10:** For cycle C_n , $n \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$, there is no efficient strong (weak) dominating (γ ,eD)-set. **Proof:** Let $C_n = \{v_1, v_2, v_3, ..., v_1\}.$ **Case 1:** $n \equiv 1 \pmod{3}$ The graph C_n has more than one efficient dominating (γ ,eD)-set. In each set, there exists elements u and v such that, $d(u,v) \leq 2$.

Sub Case 1a: d(u,v) = 1

Let $u, v \in S_i$ where S_i is one of the efficient dominating (γ ,eD)-sets of C_n .

Therefore, $|N_s[u] \cap S_i| \neq 1$ ($|N_w[u] \cap S_i| \neq 1$) and $|N_s[v] \cap S_i| \neq 1$ ($|N_w[v] \cap S_i| \neq 1$). Hence, S_i 's are not efficient strong (weak) dominating (γ ,eD)-sets of C_n .

Sub Case 1b: d(u,v) = 2

Let $u, v \in S_i$ where S_i is one of the efficient dominating (γ,eD) -sets of C_n . Let $w \in C_n$ be the vertex which lies between u and v. Then, $|N_s[w] \cap S_i| \neq 1$ ($|N_w[w] \cap S_i| \neq 1$). Therefore, S_i 's are not efficient strong (weak) dominating (γ,eD) -sets of C_n . Since every efficient strong(weak) dominating (γ,eD) -set is also a (γ,eD) -set, it is enough to prove that no (γ,eD) -set of C_n , $n \equiv 1 \pmod{3}$, is an efficient strong(weak) dominating (γ,eD) -set of C_n . Since S_i is arbitrary, by subcases 1a and 1b, C_n , $n \equiv 1 \pmod{3}$ has no efficient strong(weak) dominating (γ,eD) -set.

Case 2: $n \equiv 2 \pmod{3}$

In this case, the graph C_n has more than one (γ,eD) -set and in each set there exists u, v such that d(u, v) = 2. Let $u, v \in S_i$ where S_i is one of the (γ,eD) -sets of C_n . Let $w \in C_n$ be the vertex which lies between u and v. Then, $|N_s[w] \cap S_i| \neq 1$ ($|N_w[w] \cap S_i| \neq 1$). Therefore, S_i 's are

not efficient strong (weak) dominating (y,eD)-sets of C_n. Therefore, C_n has no efficient strong (weak) dominating (y,eD)-set.

Theorem 2.11: The star graph $K_{1,n}$ is not an efficient strong and weak dominating (γ ,eD)-graph for all $n \ge 2$.

Proof: Let $G = K_{1,n}$; $n \ge 2$.

Let $V(K_{1,n}) = \{v, v_1, v_2, ..., v_n\}$ and v be the central vertex. By Theorem 1.5, $S = \{v_1, v_2, ..., v_n\}$ is the minimum (γ, eD) -set of $K_{1,n}$ and $\gamma_{eD}(K_{1,n}) = n$.

© 2018 JETIR August 2018, Volume 5, Issue 8

www.jetir.org (ISSN-2349-5162)

(i) $N_s[v] = \{v\}$ and $v \notin S$ and so $|N_s[v] \cap S| \neq 1$. Therefore, S is not an efficient strong dominating (γ ,eD)-set of $K_{1,n}$. Since every efficient strong dominating (γ ,eD)-set is also a (γ ,eD)-set, there exists no efficient strong dominating (γ ,eD)-set for $K_{1,n}$. Therefore, star graph is not an efficient strong dominating (γ ,eD)-graph.

(ii) $N_w[v] = \{v, v_1, v_2, ..., v_n\}$ and so $|N_w[v] \cap S| = n \ge 2$. Therefore, S is not an efficient weak dominating (γ, eD)-set of $K_{1,n}$. Since every efficient weak dominating (γ, eD)-set is also a (γ, eD)-set. Therefore, star graph is not an efficient weak dominating (γ, eD) - graphs. Hence, star graph is not an efficient strong and weak dominating (γ, eD) - graph.

Theorem 2.12: The path P_n, n=2 (mod 3) has efficient strong dominating (γ ,eD)-set and $es\gamma_{eD}(P_n) = \gamma_{eD}(P_n) = \left\lceil \frac{n-4}{3} \right\rceil + 2.$

Proof: Let $P_n = (v_1, v_2, v_3, ..., v_n)$. Then, $S = \{v_1, v_3, v_6, v_9, ..., v_{n-5}, v_{n-2}, v_n\}$ is the unique minimum efficient strong dominating (γ , eD)-set of P_n

which is also a minimum (γ ,eD)-set. Therefore, by Theorem 1.6, $es\gamma_{eD}(P_n) = \left\lceil \frac{n-4}{3} \right\rceil + 2$.

Theorem 2.13: The paths P_n , $n \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$ have no efficient strong dominating (γ ,eD)-set.

- **Proof:** Let $P_n = (v_1, v_2, v_3, ..., v_n)$.
- **Case (i):** $n \equiv 0 \pmod{3}$.

Let S be a (γ,eD) -set of P_n . Then, $|N_s[v_2] \cap S| \neq 1$ or $|N_s[v_{n-1}] \cap S| \neq 1$. Therefore, S is not an efficient strong dominating (γ,eD) -set of P_n . Since every efficient strong dominating (γ,eD) -set is also a (γ,eD) -set, it is enough to prove that no (γ,eD) -set of P_n , $n \equiv 0 \pmod{3}$, is an efficient strong dominating (γ,eD) -set of P_n . Since S is arbitrary, P_n , $n \equiv 0 \pmod{3}$ has no efficient strong dominating (γ,eD) -set. **Case (ii):** $n \equiv 1 \pmod{3}$.

In this case, $S = \{v_1, v_4, v_7, ..., v_n\}$ is the unique (γ, eD) -set of P_n and $|N_s[v_2] \cap S| = |N_s[v_{n-1}] \cap S| = 0$. Therefore, S is not an efficient strong dominating (γ, eD) -set. Therefore, proceeding in case (i) P_n , $n \equiv 1 \pmod{3}$ has no efficient strong dominating (γ, eD) -set.

Theorem 2.14: The path P_n , $n \equiv 1 \pmod{3}$ has an efficient weak dominating (γ ,eD)-set and

$$\operatorname{ew}_{\gamma_{s}}(\mathbf{P}_{n}) = \gamma_{eD}(\mathbf{P}_{n}) = \left| \frac{n-4}{3} \right| + 2.$$

Proof: Let $P_n = (v_1, v_2, v_3, ..., v_n)$. Then, $S = \{v_1, v_4, v_7, ..., v_n\}$ is the unique (γ, eD) -set of P_n , which is also the minimum efficient weak dominating (γ, eD) -set of P_n . Therefore, by Theorem 1.6,

$$\mathrm{ew}\gamma_{\mathrm{eD}}(\mathrm{P_n}) = \left\lceil \frac{n-4}{3} \right\rceil + 2.$$

Theorem 2.15: The paths P_n , $n\equiv 0 \pmod{3}$ and $n\equiv 2 \pmod{3}$ have no efficient weak dominating (γ ,eD)-set.

Proof: Let $P_n = (v_1, v_2, v_3, ..., v_n)$.

Case (i): $n \equiv 0 \pmod{3}$

Let S be a (γ, eD) -set of P_n . Then, $|N_w[v_2] \cap S| \neq 1$ or $|N_w[v_{n-1}] \cap S| \neq 1$. Therefore, S is not an efficient weak dominating (γ, eD) -set of P_n . Since every efficient weak dominating (γ, eD) -set is also a (γ, eD) -set, it is enough to prove that no (γ, eD) -set of P_n , $n \equiv 0 \pmod{3}$, is an efficient weak dominating (γ, eD) -set of P_n . Since S is arbitrary, P_n , $n \equiv 0 \pmod{3}$ has no efficient weak dominating (γ, eD) -set. **Case (ii)**: $n \equiv 2 \pmod{3}$

In this case also, P_n has more than one (γ ,eD)-set. In each set the vertices either v_2 or v_{n-1} does not satisfy the condition $|N_w[v_i] \cap S|=1$. Therefore, proceeding as in case (i), P_n , $n \equiv 2 \pmod{3}$ has no efficient weak dominating (γ ,eD)-set.

Theorem 2.16: The complete graph $K_{p, p} > 2$ is an not efficient strong (weak) dominating (γ, eD)-graph.

Proof: Let $G = K_p$ be a graph and S be a (γ, eD) -set of G. Suppose $u, v \in S$ such that u and v are adjacent. (Since, in K_p any two vertices are adjacent). Therefore, $|N_s[v] \cap S| \neq 1$ ($|N_w[v] \cap S| \neq 1$). So that, S is not an efficient strong (weak) dominating (γ, eD) -set of G. Hence, it

is not an efficient strong (weak) dominating (γ,eD) -graphs.

Theorem 2.17: Complete bipartite graphs $K_{m,n}$ are not an efficient strong (weak) dominating (γ ,eD)-graphs.

Proof:

Case (i): m = n = 1

Then, $K_{m,n} \cong K_2$. Therefore, by Theorem 2.16, $K_{m,n}$ is not an efficient strong(weak) dominating (γ ,eD)-graph.

Case (ii): $n \ge 2, m = 1$

We get a star graph. By Theorem 2.11, $K_{m,n}$ is not an efficient strong(weak) dominating (γ ,eD)-graph.

Case (iii): m, $n \ge 2$

Let V ($K_{m,n}$) = { v_1 , v_2 , ..., v_n , u_1 , u_2 , ..., u_m }. Let S be a (γ ,eD)-set of $K_{m,n}$. Then, the vertices of V – S does not satisfy the condition $|N_s[v] \cap S|=1$ and $|N_w[v] \cap S|=1$ for all $v \in V - S$. Therefore, S is not an efficient strong(weak) dominating (γ ,eD)-set of $K_{m,n}$. Since every efficient strong(weak) dominating (γ ,eD)-set is also a (γ ,eD)-set, it is enough to prove that no (γ ,eD)-set of $K_{m,n}$, is an efficient strong(weak) dominating (γ ,eD)-set of K_{m,n} has no efficient strong(weak) dominating (γ ,eD)-set. Hence, complete bipartite graphs $K_{m,n}$ are not efficient strong(weak) dominating (γ ,eD)-graphs.

Theorem 2.18: The wheel graph $W_{1,p} p \ge 4$ has no efficient strong and weak dominating (γ ,eD)-graphs.

Proof: Let $V(W_{1,p}) = \{v, v_1, v_2, ..., v_p\}$ and v be the central vertex.

(i) $N_s[v] = \{v\}$ and so $|N_s[v] \cap S|= 0$. Therefore, S is not an efficient strong dominating (γ ,eD)-set of $W_{1,p}$. Also, there exists no efficient strong dominating (γ ,eD)-set for $W_{1,p}$. Therefore, wheel graphs are not an efficient strong dominating (γ ,eD)-graphs.

(ii) $N_w[v] = \{v, v_1, v_2, ..., v_p\}$ and so $|N_w[v] \cap S| = p - 2 \ge 2$. Therefore, S is not an efficient weak dominating (γ ,eD)-set of $W_{1,p}$. Also, there exists no efficient weak dominating (γ ,eD)-set for $W_{1,p}$. Therefore, wheel graphs are not an efficient weak dominating (γ ,eD)-graphs. Hence, wheel graphs are not an efficient strong and weak dominating (γ ,eD)-graphs.

Remark 2.19: If S is an efficient strong dominating (γ ,eD)-set of a connected graph G, then V-S is a dominating set of G.

Proof: Since, every efficient strong dominating (γ ,eD)-set is independent and G is connected every vertex in S is adjacent to at least one vertex in V-S. Therefore, V-S is a dominating set of G.

Theorem 2.20: $K_{n,n} - 1F$ is an efficient strong dominating (γ , eD)-graph and

 $es\gamma_{eD}(K_{n,n}-1F) = 2$ for all $n \ge 3$.

Proof: Let $G = K_{n,n} - 1F$ and $V(G) = \{v_1, v_2, v_3, ..., v_n, u_1, u_2, ..., u_n\}$. Since we remove 1F from $K_{n,n}$, degree of each vertex is reduced to n-1. Each v_i is not adjacent to one u_j for all $i, j \ge 3$. Therefore, $\{v_i, u_j\}$ is an efficient strong dominating (γ, eD) -set. Hence, $es\gamma_{eD}(K_{n,n} - 1F) = 2$ for all $n \ge 3$.

Theorem 2.21: $[K_n]$ is an efficient strong dominating (γ , eD)-set,

 $es\gamma_{eD}[K_n] = p - \Delta([K_n]) = \frac{n^2 - 3n + 4}{2}$ where $p = |V([K_n])|$.

Proof: Let $n \ge 3$. Let $v_1, v_2, ..., v_n$ be the vertices of K_n . Let $G = [K_n]$. $V([K_n]) = \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_{\binom{n}{2}}\}$. By the definition of $[K_n]$,

each u_i is adjacent to exactly two vertices of K_n . Therefore, $|V(K_n)| = p - n + {n \choose 2} = n + \frac{n(n-1)}{2} = \frac{n^2 + n}{2}$. $\Delta(G) = \deg(v_i)$, for any i = 1

to n. Each v_i is adjacent to the remaining $(n - 1)v_i$'s and $(n - 1)u_i$'s. Therefore

Total number of u_i's which are not adjacent to

$$v_{i} = \left(\frac{n^{2} - n}{2}\right) - (n - 1) = \frac{n^{2} - 3n + 2}{2}.$$
 These $\frac{n^{2} - 3n + 2}{2}.$ u_j's together

with v_i form an efficient strong dominating (γ , eD)-set S of G. Therefore, G is an efficient strong dominating (γ , eD)-set, $|S| = 1 + n^2 - 3n + 2$, $n^2 - 3n + 4$.

$$\frac{n^2 - 3n + 2}{2} = \frac{n^2 - 3n + 4}{2}.$$
 Therefore, $es\gamma_{eD}[G] \le \frac{n^2 - 3n + 4}{2}.$

Let T be any efficient strong dominating (γ , eD)-set S of G. Since T is independent, T can contain at most one v_i , $1 \le i \le n$. Since for $n \ge 3$, no u_j can strongly dominate any v_i , T contains at least one v_i , $(1 \le i \le n)$. Therefore T contains exactly one v_i . Any u_j can dominate only two v_i 's and all u_j 's are independent. Therefore, T contains all u_j 's not adjacent with $v_i \in T$.

And
$$|T| \ge 1 + \left(\frac{n^2 - n}{2}\right) - (n - 1) = \frac{n^2 - 3n + 4}{2}$$
. Therefore, $es\gamma_{eD}[G] \ge \frac{n^2 - 3n + 4}{2}$.

Hence, $es\gamma_{eD}[G] = \frac{n^2 - 3n + 4}{2}$

Example 2.22: Consider the following graph $G = [K_4]$.

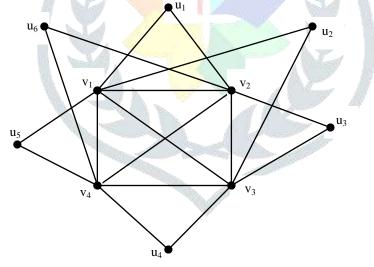


Figure 2.3

Here, $\{v_1, u_3, u_4, u_6\}$, $\{v_2, u_2, u_4, u_5\}$, $\{v_3, u_1, u_5, u_6\}$, $\{v_4, u_1, u_2, u_3\}$ are the efficient strong dominating (γ , eD)-set of G and p = 10, Δ (G) = 6.

Hence,
$$es\gamma_{eD}[G] = \frac{n^2 - 3n + 4}{2} = 4 = p - \Delta(G).$$

3. Efficient Strong (Weak) Dominating (y,eD)-Number of Subdivision Graphs

Theorem 3.1: $S(P_n)$ is an efficient strong dominating (γ ,eD)-graph if $n\equiv 0 \pmod{3}$ it is an efficient weak dominating (γ ,eD)-graph if $n\equiv 1 \pmod{3}$ and it is neither an efficient strong dominating (γ ,eD)-graph nor an efficient weak dominating (γ ,eD)-graph if $n\equiv 2 \pmod{3}$. **Proof:**

Case (i): n≡0 (mod 3)

Here, $S(P_n)$ is some P_m with m=2 (mod 3). Therefore, by Theorem 2.2, $S(P_n)$ where n=0(mod 3) is an efficient strong dominating (γ ,eD)-graph.

Case (ii): n≡1 (mod 3)

Here, $S(P_n)$ is some P_m with m=1(mod 3). Therefore, by Theorem 2.14, $S(P_n)$ where n=1(mod 3) is an efficient weak dominating (γ ,eD)graph.

Case (iii): $n \equiv 2 \pmod{3}$

Here, $S(P_n)$ is some P_m with m=0(mod 3). Therefore, by Theorem 2.13(i) and 2.15, $S(P_n)$ where n=2(mod 3) is neither an efficient strong dominating (γ ,eD)-graph nor an efficient weak dominating (γ ,eD)-graph.

Theorem 3.2: When $n \equiv 0 \pmod{3}$, $S(C_n)$ is an efficient strong and weak dominating (γ, eD) -graph and $es\gamma_{eD}(S(C_n)) = ew\gamma_{eD}(S(C_n)) = 2n$ and it is neither an efficient strong dominating (γ ,eD)-graph nor an efficient weak dominating (γ ,eD)-graph if $n \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$. **Proof:**

Case (i): n≡0 (mod 3)

Here, the graph $S(C_{3n})$ is also a cycle $C_{2(3n)}$. Therefore by Theorem 2.9, $S(C_{3n})$ is both an efficient strong and weak dominating (γ ,eD)-graph and also $es\gamma_{eD}(S(C_{2(3n)})) = ew\gamma_{eD}(S(C_{2(3n)})) = 2n$.

Case (ii): n≡1 (mod 3) Here, the graph $S(C_n)$, $n \equiv 1 \pmod{3}$ is some C_m with $m \equiv 2 \pmod{3}$. Therefore, by case (ii) of Theorem 2.13, $S(C_n)$, $n \equiv 1 \pmod{3}$ has no efficient strong (weak) dominating (γ ,eD)-set.

Case (iii): $n \equiv 2 \pmod{3}$

Here, the graph $S(C_n)$, $n\equiv 2 \pmod{3}$ is some C_m with $m\equiv 1 \pmod{3}$. Therefore, by case (i) of Theorem 2.13, $S(C_n)$, $n\equiv 2 \pmod{3}$ has no efficient strong (weak) dominating (γ ,eD)-set.

Theorem 3.3: The subdivision graph $S(W_{1,p})$, $p \ge 3$ has no efficient strong and weak dominating (γ ,eD)-set.

Proof: Let v be the central vertex of the graph $W_{1,p}$. Let $\{u_1, u_2, \dots, u_p\}$ be the vertices which subdivide the edges of the outer cycle of the graph $W_{1,p}$. Then, $W = \{v, u_1, u_2, ..., u_p\}$ is the minimum edge detour dominating set of the graph $S(W_{1,p})$. Therefore, the edge detour domination number of $S(W_{1,p})$ is $\gamma_{eD}(S(W_{1,p})) = p + 1$.

Let $\{v_1, v_2, ..., v_p\}$ be the vertices of the outer cycle of the graph $S(W_{1,p})$ which are the original vertices of $W_{1,p}$ then $N_s[v_i] = \{v_i\}$ and $N_s([v_i] \cap S) = 0$ for all i=1,2,...,p. Therefore, $S(W_{1,p})$ has no efficient strong dominating (γ ,eD)-set.

Also, $N_w([v_i] \cap S) = 2$ for all i=1,2,...,p. Therefore, $S(W_{1,p})$ has no efficient weak dominating (γ ,eD)-set. Hence, $S(W_{1,p})$ has no efficient strong and weak dominating (γ, eD) -set.

Theorem 3.4: The subdivision of the star graph $S(K_{1,n})$, $n \ge 2$ has efficient strong and weak dominating (γ, eD) -set and $es\gamma_{eD}(S(K_{1,n})) =$ $ew\gamma_{eD}(S(K_{1,n})) = n+1.$

Proof: Let $V(K_{1,n}) = \{v, v_1, v_2, ..., v_n\}$ where v is the central vertex of the star and $\{u_1, u_2, ..., u_n\}$ be the vertices which subdivide the n edges of the star graph. Then, $V((S(K_{1,n})) = \{v, v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$ and $S = \{v, v_1, v_2, ..., v_n\}$ is the minimum edge detour dominating set of $S(K_{1,n})$. Therefore, $\gamma_{eD}(S(K_{1,n}) = n+1$.

(i)Here, $N_s[v] = \{v\}$ and so, $N_s([v] \cap S) = 1$. Then, for each v_i , $N_s[v_i] = \{u_i, v_i\}$ and $N_s([v_i] \cap S) = 1$ for all i=1,2,...,n. Also, for each u_i , $N_{s}[u_{i}] = \{u_{i}, v\}$ and $N_{s}([u_{i}] \cap S) = 1$ for all i=1,2,...,n. Therefore, for every vertex v of $S(K_{1,n})$ satisfy the condition $N_{s}([v] \cap S) = 1$. Hence, S is the minimum efficient strong dominating (γ, eD) -set and $es_{\gamma}(S(K_{1,n})) = n+1$.

(ii)Now, $N_w[v] = \{v, u_1, u_2, ..., u_n\}$ and so, $N_w([v] \cap S) = 1$. Then, for each v_i , $N_w[v_i] = \{v_i\}$ and $N_w([v_i] \cap S) = 1$ for all i = 1, 2, ..., n. Also, for each u_i , $N_w[u_i] = \{u_i, v_i\}$ and $N_w([u_i] \cap S) = 1$ for all i=1,2,...,n. Therefore, for every vertex v of $S(K_{1,n})$ satisfy the condition $N_w([v] \cap S) = 1$. Hence, S is the minimum efficient weak dominating (γ, eD) -set and $ew\gamma_{eD}(S(K_{1,n})) = n+1$.

Hence, The subdivision of the star graph $S(K_{1,n})$, $n \ge 2$ has efficient strong and weak dominating (γ, eD) -set and $es\gamma_{eD}(S(K_{1,n})) =$ $ew\gamma_{eD}(S(K_{1,n})) = n+1.$

Theorem 3.5: The subdivision graph $S(K_n)$, $n \ge 3$ has no efficient strong and weak dominating (γ ,eD)-set.

Proof: Let $V(K_n) = \{v_1, v_2, ..., v_n\}$ and let $\{u_1, u_2, ..., u_{n}\}$ be the vertices which subdivide the edges of K_n . Then, $V(S(K_n)) = \{v_1, v_2, ..., v_n, v_n\}$

$$u_1, u_2, ..., u_{\binom{n}{2}}$$
 and $S = \{v_1, v_2, ..., v_n\}$ is the minimum edge detour dominating set of K_n and $\gamma_{eD}(S(K_n) = n.$

(i) Here, $N_s([u_i] \cap S)=2$ for every i=1,2,..., $\binom{n}{2}$. Also, there exists no efficient strong dominating (γ ,eD)-set for S(K_n). Therefore, S(K_n) has

no efficient strong dominating (γ ,eD)-set.

(ii) Here, $N_w[u_i] = \{u_i\}$ and $N_w([u_i] \cap S)=0$ for every i=1,2,..., $\binom{n}{2}$. Also, there exists no efficient weak dominating (γ, eD) -set for $S(K_n)$.

Therefore, $S(K_n)$ has no efficient weak dominating (γ ,eD)-set.

Reference:

[1] F.Buckley and F.Harary, Distance in Graphs Addision-Weseely, Reading Ma, 1990.

[2] G.Chartrand, H.Escuardo and P.Zang, Distance in Graphs Taking the Long View, AKCE Journal of Graphs and Combinatorics 1 No 1, 2004. 1-13.

[3] G.Chartrand, L.Johns and P.Zang, Detour Number of Graph, Utilitas Mathematics, 64 (2003) 97-113.

[4] Haynes T.W, Hedetniemi S.T and Slater P J, Fundamental of Domination in Graphs, Marcel Decker, Inc., New York 1998.

[5] Mahalakshmi.A, Palani.K and Somasundaram.S, Edge Detour Domination Number of Graphs, Proceedings of International Conference on Recent Trends in Mathematical Modeling. ISBN 13-978-93-92592-00-06 (2016), 135-144.

[6] Mahalakshmi.A, Palani.K and Somasundaram.S, Efficient Dominating (γ, ed)-Number of Graphs, International Journal of Mathematics And its Applications, Volume 5, Issue 1A (2017), 59-64, ISSN: 2347-1557.

[7] Meena.N, Subramamian.A, Swaminathan.V, Strong Efficient Domination in Graphs, International Journal of Innovative Science,

Engineering & Technology, Volume 1 Issue 4, June 2014, 172-176, ISSN 2348 – 7968.

[8] Ore and Berge, Theory of graphs, American Mathematical Society, Colloquim Publications Volume XXXVIII, 1962.

[9] Palani K and Nagarajan A, (G,D) – Number of a graph, International Journal of Mathematics Research. ISSN: 0976-5840 Volume 3 number 3 (2011), 285-299.

[10] Sampathkumar.E and Pushpa Latha .L, Strong weak domination and domination balance in a graph, Discrete Mathematics, 161: 235-242, 1996.

[11] A.P.Santhakumaran and S.Athisayanthan, Edge detour graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 69 (2009) 191-204.

