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Abstract: This research introduces the arithmetic logic behind elliptic curve cryptography. We initially discuss on notion about 

asymmetric key cryptosystems, which depend on mathematical issues which require large time for computing. Elliptic curve 

cryptosystems frame illustrations of PKC'S and depend on DLP. We additionally treat certain hypothesis about elliptic curves, 

particularly the ones over limited fields. Especially to evade certain critical bouts against ECDL, distinctive focus were proposed on 

certain parameters. Finally, we depict general strategies to take after when outlining ECDL. 
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1    Introduction 

Everyelement possesses two keys in asymmetric key cryptography, those are: symmetric and asymmetric key.These are associated in a 

uniqueway by single way function. Trapdoor functions are ease to compute but hard to invert. The cryptographic security protocol is 

associated to complex inversing. Thus, this complex issue must be estimated in relative of time required by computers to compute this 

problem. Complexity theory deal with this notion of complex algorithms. Identifying complex problems is a vital mission in cryptography 

and utilized in protocols as cryptographic elementary. RSA is one amongprotocolswhich hinged on complex computing of enormous 

numbers. There exist certain algorithms which require less time to compute those numbers. For highersecurity level, RSA is not suitable and 

one has to identify for other alternatives to invert complex functions. DLP over limited field is additional cryptographic primitive utilized in 

security protocols. But they present flaw and distinctivecare is essential in designing such problem. In elliptic curves, one builds discrete 

logarithm on set of point of curve. This research elucidates how to buildthose system leading to effectivesingle way function and to evade 

attacks and weakness. This work is built on abstract of results obtained in [5]. 

 

Definition 2.1(One-way functions) Let k is a security parameter and n be a    function of k. Let f be  𝐟 ∶  {𝟎, 𝟏}∗  → {𝟎, 𝟏}∗.Then f is a one-

way function if 

1. f is easy to compute. For all n and 𝐱 𝛜{𝟎, 𝟏}𝐧, there exists a deterministic polynomial time algorithm 𝐟𝛂such that 𝐟𝛂 (x) = f(x). 

2. f is hard to invert. To all probabilistic polynomial time algorithms A, 

      Pr {x <— {0,1}n,y = f ( x ) , x1<——.A(1n, y)|f(x1) = y}<
1

2k, 

In addition to the one-way property of encryption function, we also require Charles, who possesses the symmetric key 𝐬Қ to decrypt the 

message. So we allow the decryption to be possible using a trapdoor, secret information that allows to easily inversing encryption function. 

Such functions are called single-way trapdoor functions. 

These one-way trapdoor functions are constructing blocks of modern cryptosystems built on computational number-theoretic 

assumptions such as DLPs and integer factorization. 

2.2The Discrete Logarithm Problem 

All PKC’s we treat in this researchdepend on the complexity of DLP. We will now define this problem. 

Let 𝐻be an abelian (additive) group, and  𝑔 ∈ 𝐻. Now suppose that ℎ ∈ < 𝑔 >⊂  𝐻.One can question ourselves which 𝑘 ∈ ℤ satisfies the 

identity 𝑘𝑔 =  ℎ.Finding such a 𝑘 is DLP. More general: 

Definition 2.2.1Given an abelian group 𝐻and𝑔, ℎ ∈ 𝐻, the problem of discovering a 𝑘 ∈ ℤ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑘𝑔 =  ℎ(if it exists) is called DLP. 

Such an integer 𝑘is termed a discrete logarithm of ℎto base 𝑔. 
If we write the identity of DLP multiplicatively, it becomes 𝑔𝑘 =  ℎ.In this notation, the use of the word logarithm is more clear. In other 

words, a discrete logarithm is uniquely determined modulo the order of base. Therefore, we visualize discrete logarithms as elements of 

ℤ/n ℤ. Following notation as in [14], we sometimes write log (h) for the discrete logarithm of h to base g, if it exists. 

Example 2.2.2. Let 𝐻be the group Z/11Z*. We’ll try to determine a discrete logarithm of 10̅̅̅̅  to the base 2̅ in Z/11Z. The apparentmethod to 

perform this is by noting down all powers of 2 ̅in Z/11Z until we hit 10.̅̅ ̅̅  Now 

𝟐 ̅𝟏=�̅�, �̅�𝟐=�̅�,�̅�𝟑=�̅�, �̅�𝟒=�̅�,�̅�𝟓  = 𝟏𝟎̅̅̅̅  
Hence log2̅ 10̅̅̅̅ =  5   .Note that the discrete logarithm of 𝟏𝟎̅̅̅̅ to base �̅� do not exist in Z/11Z, since 𝟏𝟎̅̅̅̅ ∉<4̅>. 

In the above example, the group structure is much stiff to hold at first sight. This makes the problem harder. Hence we may say that the DLP 

will only be difficult, if structure of the underlying group is complex at first sight. In this research, we focus on the groups of the form Z/nZ*, 

and on groups given by elliptic curves. 

Here we consider the group of point of elliptic curve over finite field and the related DLP. 

 

3 Elliptic curves 
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In this section we formally state the ECDLP. We recall the generic algorithms to computeECDLP in exponential time. We also give 

emphasis that the DLP is easy for certain types of curves which can be avoided by selecting appropriate elliptic curve parameters. 

We know that DLP in circumstances of limited fields can computed in subexponential time utilizing the index calculus algorithm. Foremost 

objective of this research is to have a similar subexponential time algorithm for computing the ECDLP. ECDLP is transferred for computing 

a system of multivariate polynomial equations.  

3.1    Elliptic Curve Definition  

Definition 3.1.1Let 𝕂  be afield. An elliptic curve over 𝕂is well-defined by a non-singular affine Weierstrass equation 

E : y 2+ a1xy + a3y = x 3+ a2x2+ a4x + a5, (A) 

Whereaiϵ𝕂. 

By non-singular we mean the curve is smooth: 
∂E

∂x
and 

∂E

∂y
 do not vanish simultaneously. In other words 

the system of equations  

                        y 2+ a1xy + a3y= x 3+ a2x2+ a4x + a5.    

                        a1y − 3x2 − 2a2x − a4 =0 

                       2y + a1x + a3                    = 0 

has no common solutions in �̅� 

By applying a change of coordinates, the elliptic curve E can be transformed into a short Weierstrass form. 

Theorem 3.1.2Let E is the elliptic curve given in (A). Assume E̅ is another elliptic curve given by 

Ẽ:y 2+ a1̃xy + a3̃y = x 3+ a2̃x2+ a4̃x + a5̃,Then E and Ẽ are said to be isomorphic over 𝕂if there exists u,r,s,t ∈𝕂such that the change of 

coordinates 

   (x, y) → (u2 x + r,u3 y + u2 sx +t) 

transforms the curve E to Ẽ. 
Proof.See Chapter 3 Section 3 of [28] 

Corollary 3.1.3(Short Weierstrass form) Assume char (𝕂) ∉ {2,3}. Let E be an elliptic curve given by the Weierstrass equation as in (A). 

Then there exist a, b ∈𝕂 such that the elliptic curve Ẽgiven by 

Ẽ : y 2  = x3+ ax + bis isomorphic to E. 

Proof. See Chapter 3 Section 1 of [13]. 

 

3.2  The Group Law 

Let E be an elliptic curve over a field 𝕂, with char (𝕂) ∉ {2,3}.This section initially elucidates geometrically followed by algebraically, the 

group law on an elliptic curve. 

One approach to defining the group law on an elliptic curve is to do so in projective space, and then to reduce to the affine case by taking the 

point at infinity to be the point [0 : 1 : 0]9. Instead we take this setup for granted and begin to define the group law in the affine setting, 

denoting the point at infinity as O. The group law can then be defined geometrically. Suppose P1and P2 are two points on an elliptic curve 

and we wish to determine P1⨁ P2. We connect the points P1and P2 with a line l. This line l will intersect the curve at a third point, which we 

will denote P3. We then connect P3. with the point at infinity, which will simply be a vertical line, in this case, with the line l'. The line l' will 

then intersect the curve E in a third point as well. It is this point that we will denote as P1⊕ P2, the sum of P1 and  P2 on E. Later, we will 

drop the ⊕ notation in favor of + where there should be no confusion. From this type of geometric construction we can immediately see how 

to define things algebraically. 

Theorem 3.2.1(The Group Law) Let E be an elliptic curve over 𝕂 with char (𝕂) ∉ {2,3},with defining equation E : y2 = x3 + Ax + B. Let 

 P1 = (x1, y1) and  P2 = (x2, y2) be points on E such that  P1,  P2 ≠ O. We define  P1+ P2= P3 = (x3, y3)as follows. 

1. If x1 ≠ x2 then x3 = m2 -  x1 - x2, y3 = m(x1 - x3) - y1 where m = 
y2−y1.

x2−x1
 

2. If x1 = x2 but y1 ≠ y2, then  P1  +  P2= O 

3. If  P1  =  P2 and y1 ≠ 0,  then x3= m2 - 2x1,y3 = m(x1 - x3) - y1 where         m =   
𝟑𝐱𝟏

𝟐+𝐀.

𝟐y1
 

4.if  P1  =  P2 and y1 = 0 then  P1  +  P2= O . 

Notice that we did not take into accounts that  P1  or  P2 could in fact be the point at infinity here. Doing so results in several special cases 

which we omit but can be found in a variety of sources including [7], [8], [15] and [19]. We can also define the group law algebraically over 

fields of characteristic 2 and 3; however we do not do it here. Excellent sources for these definitions are [7], [8] and [15, Appendix A]. 

Regardless of the field of definition, and including all special cases for points on E, we now have a group which satisfies the following 

properties. 

Theorem 3.2.2The addition law defined above on an elliptic curve E gives E the structure of an Abelian Group. We will denote the identity 

element as O, and the inverse of point P as -P. 

Proof: proof can be found in [12]. 

Theorem 3.2.3 (Bezout’s Theorem) Let C1 and C2  be two projective curves well-defined over C of degrees m and n which share common 

component. Then sum of intersection numbers, counting multiplicities, at point of intersection P is 𝑚𝑛. See[12]for definition of intersection 

number. 

3.3    Elliptic Curves Over Finite Fields 
The above section is a general construction; the group law applies to elliptic curves over all fields. Since we are concerned with 

cryptographic applications, we will primarily deal with elliptic curves over limited fields. One still agree to same convention that O is point 

at infinity and is identity element for groups. When theory of elliptic curves over Q is fully developed, one translates all constructions with 

ease to a finite field 𝐹𝑞, for some 𝑝𝑟𝑖𝑚𝑒 𝑞 𝑜𝑟 𝑞 = 𝑝𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℤ.    

4The Elliptic Curve Discrete Logarithm Problem (ECDLP) 

Elliptic curves were introduced for cryptography by Koblitz [17] and Miller [24], these curves defined over finite fields have become a 

substitute in description of asymmetric key cryptosystems which are adjacent analogs of existing schemes such as Diffie-Hellman Key 
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exchange schemes [32],[1] and digital signature algorithms [2], [25]. Their applications range to primality testing and integer factorization 

[22],[21]. 

Elliptic curves are good choices for design of cryptosystems mainly because they offer relatively small key sizes [20] and more efficient 

computations [6]. More importantly the ECDLP, which is the heart of the security of these cryptosystems, has no known sub exponential 

attack in general. 

Definition 4.1. (ECDLP) Consider an elliptic curve E well-defined over a field 𝕂. Let 𝑃 ∈  𝐸 be a point having order  𝑎𝑛𝑑 𝑙𝑒𝑡 𝑄 ∈  𝐸 . The 

elliptic curve discrete problem is to find 𝛽, 𝑖𝑓 𝑖𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝑠𝑢𝑐ℎ that Q = [β] P. 

The ECDLP is accepted to be a hard computational issue for a fitting size of parameters. Anyway there are some known assaults which could 

be effectively dodged. The majority of the assaults exchange the ECDLP to some other gathering where the DLP is simple. For instance, the 

Weil plunge and the GHS at¬tacks [10], [11] exchange the DLP for elliptic bends characterized over paired expansion fields to DLP for 

hyper elliptic bends, where subexponential calculations to take care of the discrete logarithm issue exist [16].In what tails we center around 

assaults that exchange the ECDLP to the DLP over limited field augmentations. We additionally feature that a large portion of the 

calculations are not ready to comprehend the ECDLP in subexponential time. The expectation is to build up a list math calculation to 

illuminate the ECDLP like the case it unravels the DLP over limited fields and their augmentations in subexponential time. 

4.2 Point Counting 

We are identifying for sets of order of large prime divisor. This was the exact main significance of speed of point counting playing a vital 

role in designing elliptic curve DLP. The computation of the order of a group for curves 𝐶 𝑜𝑓 𝑔𝑒𝑛𝑢𝑠 𝑔defined over fields𝐹𝑞can be 

performed efficiently by not too complicated algorithms if 

• The curve 𝐶 is already defined over a small subfield 𝐹𝑞0of 𝐹𝑞[27] [30] [26] or 

• The genus 𝑔 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1, [3] [4] [9] or 

• The characteristic of 𝐹𝑞is small, [23] or 

• The genus of 𝐶 𝑖𝑠 1 𝑜𝑟 2, the field 𝐹𝑞Fqis a prime field, and the curve 𝐶  is the reduction modulo 𝑞 of a curve 𝐶 𝑤ith complex 

multiplication over a given order 𝐸𝑛𝑑𝐶 𝑖n a CM-field. Here is the algorithm [29] 

4.3  Elliptic Curve Cryptography 

We realize that Diffie-Hellman key trade, and the ElGamal cryptosystem are cases of PKC's. To characterize these frameworks, we have 

utilized the gatherings F∗p. It isn't unpredictable to imagine that we additionally could have utilized an option limited abelian gatherings. 

Here, we will inspect how Diffie-Hellman key trade and the ElGamal cryptosystem work, when we utilize an elliptic bend. We consider just 

elliptic bends past constrained fields of trademark greater than 3. 

4.4 Diffie-Hellman and ElGamal over elliptic curve groups 

Bob and Alice want to exchange an encryption key of some symmetric encryption scheme. To do this safely, they choose an elliptic curve 

𝐸/𝐹𝑞, and they pick a point 𝑃 ∈  𝐸(𝐹𝑞) of order 𝑛. Alice then picks 1 <  𝑎 <  𝑛 and computes 𝐴 =  [𝑎]𝑃 Here number 𝑎 remains secret, 

and A is made asymmetric. Bob also picks some secret number 1 <  𝑏 <  𝑛, and determines a asymmetric point 𝐵 =  [𝑏]𝑃. Now both Bob 

and Alice can determine 𝐾 =  [𝑏]𝐴 =  [𝑎]𝐵, and they use this point as encryption key. 

Adjusting the cryptosystem is also not too hard. Bob and Alice wish to communicate. They first settle on an elliptic curve 𝐸/𝐹𝑞, and pick 

some point P on this curve of order 𝑛. Alice picks her secret key 1 <  𝑎 <  𝑛, and determines the asymmetric key 𝐴 =  [𝑎]𝑃. Bob has a 

message M ∈𝐸(𝐹𝑞). He then chooses 1 <  𝑘 <  𝑛, and computes C1 =  [𝑘]𝑃 𝑎𝑛𝑑 C2=  𝑀 +  [𝑘]𝐴. He sends (C1,C2) to Alice. She can 

recover messages by solving 

C2− [𝑎]C1=  𝑀 +  [𝑘]𝐴 − [𝑎][𝑘]𝑃 =  𝑀 
4.5 Security Of PKC’s Based On Elliptic Curves 

Like before, it is clear that if someone can solve arbitrary DLPs on elliptic curve groups in reasonable time, he can easily crack Diffie-

Hellman and ElGamal defined over elliptic curve groups. 

For groups F∗
p, there exists an algorithm based on index calculus that has only subexponential running time. According to [18], it is not 

known whether elliptic curve groups also allow something like index calculus. Hence, at this time, for arbitrary elliptic curves, the best 

known general algorithm takes exponential time. 

However, we still have to be careful. There do exist some algorithms, that solve the DLP rather fast for special elliptic curves. Hence, in 

order to keep communication secure, we have to stay away from these special cases. 

An example of this is the SSSA-algorithm. When an elliptic curve E(Fq) consists of exactly q points, this algorithm solves a DLP on the 

group defined by E in polynomial time. Such elliptic curves are called anomalous. We will not treat this algorithm in this thesis, but we refer 

to [31] for a detailed explanation of the SSSA-algorithm when q is prime number. 

Another algorithm that speeds up solving the DLP on certain elliptic curves is the MOV-algorithm. It’s running time is subexponential when 

the elliptic curve on which we work is supersingular. The discoveries of these algorithms have shown that we have to be careful in choosing 

elliptic curves for cryptographic purposes. We should not consider anomalous nor super singular elliptic curves. According to [18], these are 

until now the only known dangerous classes of elliptic curves when it comes to cryptography. 

5    Conclusion.  

In this research work, Public key cryptosystems based on elliptic curve groups was examined, also called elliptic curve cryptosystems are 

remarkably secure. Till now, there are no other alternative algorithms which solves a random DLP on a random elliptic curve group in 

polynomial or subexponential time. Thus, set size must essential be kept relatively small, and making elliptic curve cryptosystems useful for 

small communication devices. However, we still have to be careful. Not every elliptic can be used for cryptographic purposes. We have to 

rule out super singular and anomalous elliptic curves. For these classes of curves, there exists relatively fast algorithms for solving the DLP, 

namely the MOV-algorithm and the SSSA-algorithm respectively. But if we stay away from these cases, elliptic curve cryptography is a 

secure way of encrypting messages 
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