Interval Valued Vague Li – Ideals of Lattice Implication Algebras

B. Adithya Subrahmanyam M.Sc (Mathematics) University of Hyderabad

Abstract: We introduce the concept of Interval valued vague LI – ideals and Interval valued vague lattice ideals of lattice implication algebra by linking the Interval valued vague set and LI-ideal theory of Lattice implication algebras. We discuss the relation between these ideals.

IndexTerms - Lattice implication algebras, Li - ideals, Interval valued vague LI - ideals.

I. INTRODUCTION

In order to research the logical system whose proportional value is given lattice, Y. XU [5] proposed the concept of lattice implication algebras, and discussed their some properties. Y.XU, Y.B. Jun and E.H. Roh [4] introduced the notion of LI – ideals of a lattice implication algebras, and discussed their some properties.

Vague set theory was first introduced by Gau and Buehrer[3] in1993. The vague set is an extension of fuzzy set. A vague set H in the universal of discourse U is characterized by a truth membership function tA and a false membership function fA. Actually, vague sets can realistically reflect the actual problem. But more often, the truth-membership and false-membership are in a range. For this reason, the notion of interval valued vague sets was presented by Atanassov in 1989 [1]. And it is regarded as an extension of the theory of vague sets. In this theory, the truth-membership function and false-membership function are a subinterval on [0,1]. Anitha.t, Amarendra.V [2] introducd the notion of vague LI —ideals of lattice implication algebras L.

The object of this paper is to make a study of Properties of Interval valued vague LI – ideals and Interval valued vague lattice ideals of lattice implication algebras L.

II. PRELIMINARIES

Definition 2.1: [5] Let $(L, V, \Lambda, ', 0, I)$ be a complemented lattice with the universal bounds 0, I and $\rightarrow: L \times L \rightarrow L$ be a mapping. (L, \vee , \wedge , \rightarrow , ', 0, I) is called a lattice implication algebra, if the following axioms hold, \forall x, y, z \in L:

```
(I_1) x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z);
(I_2) x \rightarrow x = I;
(I_3) x \rightarrow y = y' \rightarrow x';
(I_4) x \rightarrow y = y \rightarrow x = I \text{ implies } x = y;
(I_5)(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x;
(L_1) (x \lor y) \rightarrow z = (x \rightarrow z) \land (y \rightarrow z);
(L_2) (x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z).
```

Theorem 2.2:[5] Let L be a lattice implication algebra. Then for any x, y, z ϵ L, the following conclusions hold:

```
(1) If I \rightarrow x = I then x = I.
(2) I \rightarrow x = x and x \rightarrow 0 = x.
(3) 0 \rightarrow x = I and x \rightarrow I = I.
(4) x \le y if and only if x \to y = I.
(5) x \rightarrow y \ge x' \lor y.
```

Definition 2.3: [4] Let A be a subset of a lattice implication algebra L. A is said to be an LI - ideal of L if it satisfies the following conditions:

```
(1) 0 \in A;
(2) \forall x, y \in L, (x \to y)' \in A and y \in A imply x \in A.
```

Definition 2.4:[4] Let A be a subset of a lattice implication algebra L. A is said to be an lattice ideal of L if it satisfies the following conditions:

```
(1) x \in A, y \in L and y \le x imply that y \in A:
(2) \forall x, y \varepsilon A imply x \forall y\varepsilon A.
```

Definition2.5: [3] A vague set A in the universal of discourse X is characterized by two membership functions given by:

- (1) A truth membership function $t_A: X \rightarrow [0,1]$ and
- (2) A false membership function $f_A: X \to [0,1]$,

Where $t_A(x)$ is a lower bound of the grade of membership of x derived from the "evidence for x", and $f_A(x)$ is a lower bound on the negation of x derived from the "evidence against x" and $t_A(x) + f_A(x) \le 1$. Thus the grade of membership of x in the vague set A is bounded by subinterval $[t_A(x), 1 - f_A(x)]$ of [0,1]. The vague set A is written as

$$A = \{ \langle x, [t_A(x), f_A(x)] \rangle / x \in X \}.$$

Where the interval $[t_A(x), 1 - f_A(x)]$ is called the value of x in the vague set A and denoted by $V_A(x)$.

Notation [8]: Let I [0, 1] denote the family of all closed subintervals of [0, 1]. If $I_1 = [a_1, b_1]$, $I_2 = [a_2, b_2]$ are two elements of I [0, 1], we call $I_1 \ge I_2$ if $a_1 \ge a_2$ and $b_1 \ge b_2$. We define the term imax to mean the maximum of two interval as imax $[I_1, I_2] = [\max \{a_1, a_2\}, \max \{b_1, b_2\}].$

Similarly, we can define the term imin of any two intervals.

Definition 2.6[1]: An interval valued vague set A in the universe of discourse U is characterized by a truth-membership function T_G and false membership function F_G given by

$$T_A: U \to I[0, 1], F_A: U \to I[0, 1]$$

Where T_A and F_A are set-valued functions on the interval [0,1], respectively. $T_A(z) = [T_A^-(z), T_A^+(z)]$, $T_A^-(z)$ and $T_A^+(z)$ denote the lower and upper bound on the grade of membership of z derived from "the evidence for z", respectively.

Similarly, $F_{A}(z) = [F_A^-(z), F_A^+(z)]$, $F_A^-(z)$ and $F_A^+(z)$ denote, respectively, the lower and upper bound on the negation of zderived from "the evidence against z", and $T_A^+(z) + F_A^+(z) \le 1$.

The interval valued vague set G is denoted by $A = \{ \langle z, T_A(z), F_A(z) \rangle / z \in U \}$.

Definition 2.7: [2] Let A be a vague set of a lattice implication algebra L. A is said to be a vague LI - ideal of L if it satisfies the following conditions:

```
(1) \forall x \in L, V_A(0) \ge V_A(x),
(2) \forall x, y \in L, V_A(x) \ge \min\{V_A((x \to y)'), V_A(y)\}.
```

III. INTERVAL VALUED VAGUE LI- IDEALS

Definition 3.1: Let A be a Interval valued vague set of a lattice implication algebra L. A is said to be a Interval valued vague LI - ideal (briefly IVVLI) of L if it satisfies the following conditions:

```
T_A(x) \ge \min\{T_A((x \to y)'), T_A(y)\}\ and 1 - F_A(x) \ge \min\{1 - F_A((x \to y)'), 1 - F_A(y)\}, for all x, y \in L.
That is T_A^+(x) \ge \min\{T_A^+((x \to y)'), T_A^+(y)\}, T_A^-(x) \ge \min\{T_A^-((x \to y)'), T_A^-(y)\} and
1 - F_{A}^{+}(z) \ge \min\{1 - F_{A}^{+}(z) ((x \to y)'), 1 - F_{A}^{+}(z) (y)\}, 1 - F_{A}^{-}(x) \ge \min\{1 - F_{A}^{-}((x \to y)'), 1 - F_{A}^{-}(y)\}, \text{ for all } x, y \in L.
```

Example 3.2: Let $L = \{0, a, b, c, d, I\}$ be a set with Cayley table as follows:

					2	
\rightarrow	0	a	b	C	d	I
0	Ι	I	Ι	Ι	Ι	Ι
Α	c	I	b	c	b	I
В	d	a	I	b	a	I
С	a	a	I	I	a	I
d	b	I	I	b	I	I
I	0	a	b	c	d	I

Define ', \vee and \wedge -operations on L as follows:

```
x' = x \rightarrow 0, x \lor y = (x \rightarrow y) \rightarrow y, x \land y = ((x' \rightarrow y') \rightarrow y')', for all x, y \in L.
```

Then (L, V, \land , \rightarrow , $\dot{}$, 0,I) is a lattice implication algebra [13]. Let A = $\{\langle x, T_A(x), F_A(x) \rangle / x \in L\}$ be a the interval valued vague set as follows:

	T _A ⁺	T_A^-	F _A ⁺	F _A
0	0.7	0.65	0.2	0.18
a	0.5	0.45	0.31	0.22
b	0.5	0.45	0.31	0.22
С	0.7	0.65	0.2	0.18
d	0.5	0.45	0.31	0.22
I	0.5	0.45	0.31	0.22

Then A is a IVVLI-ideal of L.

Theorem 3.3: Every IVVLI- ideal A of a lattice implication algebra L is order reversing.

```
Proof: Let A be a IVVLI – ideal of L.
If x, y \in L and x \leq y, then(x \rightarrow y)' = I' = 0, and so
T_A^+(x) \ge \min\{T_A^+((x \to y)'), T_A^+(y)\} = \min\{T_A^+(0), T_A^+(y)\} = T_A^+(y),
T_{A}^{-}(x) \ge \min\{T_{A}^{-}((x \to y)^{'}), T_{A}^{-}(y)\} = \min\{T_{A}^{-}(0), T_{A}^{-}(y)\} = T_{A}^{-}(y)
And 1 - F_A^+(z) \ge \min\{1 - F_A^+(z) ((x \to y)'), 1 - F_A^+(z) (y)\}
                    = \min\{1 - F_A^+(z)(0), 1 - F_A^+(z)(y)\}\
                     = 1 - F_A^+(z)(y)
         1 - F_A^-(x) \ge \min\{1 - F_A^-((x \to y)'), 1 - F_A^-(y)\}
                     = \min\{1 - F_A^-(0), 1 - F_A^-(y)\}\
                     = 1 - F_A^-(y)
So T_A(x) \ge T_A(y), F_A(x) \ge F_A(y).
This shows that A is order reversing.
```

Definition 3.4: Let A be a interval valued vague set of a lattice implication algebra L. A is said to be a interval valued vague lattice ideal of L if it satisfies the following conditions:

- (1) $y \le x$ then $T_A(x) \ge T_A(y)$, 1- $F_A(x) \ge 1$ $F_A(y)$,
- (2) $T_A(x \vee y) \ge \min \{ T_A(x), T_A(y) \},$

 $1-F_A(x \vee y) \ge \min \{ 1-F_A(x), 1-F_A(y) \} \text{ for } x, y \in L.$

Example 3.5: Let $(LV, \Lambda, \rightarrow, ', 0, 1)$ is a lattice implication algebra in example 3.3. Define a vague set A of L as follows:

15	T _A ⁺	T_A^-	F _A ⁺	F _A
0	0.7	0.65	0.2	0.18
a	0.5	0.45	0.31	0.22
b	0.5	0.45	0.31	0.22
c	0.5	0.45	0.31	0.22
d	0.7	0.65	0.2	0.18
I	0.5	0.45	0.31	0.22

Then clearly A is a vague lattice ideal of L.

Theorem 3.6: Every IVLI – ideal of a lattice implication algebra L is a interval valued vague lattice ideal of L.

Proof: Let A be a VILI – ideal of a lattice implication algebra L. Let x, y \in L such that x \leq y. Then clearly $T_A(x) \ge T_A(y)$, $F_A(x) \ge F_A(y)$. By $((x \lor y) \rightarrow y)' = ((x \rightarrow y) \land (y \rightarrow y))' (by L_1)$ $=(x \rightarrow y)'$ $\leq (x' \lor y)'$ $= (x')' \wedge y'$

```
= x \wedge y'
We get T_A(((x \lor y) \to y)') \ge T_A(x), 1- F_A(((x \lor y) \to y)') \ge 1- F_A(x).
From the definition of IVLI - ideal, we have
         T_A(x \lor y) \ge imin \{T_A(((x \lor y) \rightarrow y)'), T_A(y)\}
                       \geq \text{imin } \{T_A(x), T_A(y)\}
And 1-F_A(x \lor y) \ge imin \{1-F_A(((x \lor y) \to y)'), 1-F_A(y)\}
                       \geq \min \{1-F_A(x), 1-F_A(y)\}
Hence every vVILI – ideal of L is a interval valued vague lattice ideal of L.
```

Remark 3.7: Converse of the above theorem need not to be true. For example the interval valued vague set A defined in example 3.7 is a interval valued vague lattice ideal of L, but not a IVVLI- ideal since $T_A(a) \not \geq \min\{ T_A((a \rightarrow d)'), V_A(d) \}$.

IV. CONCLUSION

The concept of Interval valued vague LI – ideals and Interval valued vague lattice ideals of lattice implication algebra by linking the Interval valued vague set and LI-ideal theory of Lattice implication algebras were introduced and discussed with the relation between these ideals.

REFERENCES

- [1] Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87–96 (1986).
- [2] Anitha.T, Amarendra Babu.V, Vague LI ideals on lattice implication algebra, Journal of Emerging Trends in Computing and Information Sciences, 5 (10)(2014), 788 – 793
- [3] Gau. W.L and Buehrer. D.J, Vague sets, IEEE Transactions on Systems, Man and Cybernetics, Vol.23, No.20,pp.610-614,
- [4] Jun. Y.B,Roh.E.H and Xu. Y, LI ideals in lattice implication algebras, Bull. Korean Math.Soc., Vol.35, No.1, pp.13 23, 1998.
- [5] Xu. Y, Lattice implication algebras, J. Southwest Jiaotong University, Vol.28, No.1, pp.20 27, 1993.
- [6] Zadeh. L.A, Fuzzy sets, Information and Control, Vol.8, pp.338-353, 1965.