EFFECT OF MICRONUTRIENTS ON THE GROWTH AND LEAF YIELD OF TERMINALIA ARJUNA

VINEETA ATEESH*, A.K. SINHA, N.D. BANERJEE**, N. SURYANARAYANA***

*Deptt. Of Botany, Doranda College, Ranchi University. **Regional Sericulture Research Station, Ranchi-834005, India. ***Central Tasar Research & Training Institute, Nagri, Ranchi-835303, Jharkhand (India).

Abstract – Six micronutrients namely Manganese, Zinc, Copper, Boron, Molybdenum and Iron in three doses each were foliarly applied to study the effect of micronutrients in different concentrations on the growth and leaf yield of Terminalia arjuna with 4' x 4' spacing. The usual package of practices i.e. N (150 kg/ha/hr),

P(50 kg/ha/yr), K(50 kg/ha/yr) and FYM (1 kg / plant/yr) was also followed. All the micronutrients showed promontory effects over control in respect of growth and leaf yield of T. arjuna. Among all the nineteen treatments of micronutrients under study, Manganese @ 2.00 kg / ha / crop was found to be the beset in respect of growth and leaf yield of T. arjuna. This treatment gave 31.33% increase in leaf yield over control.

Keywords : Terminalia arjuna, micronutrients, growth, leaf yield.

INTRODUCTION

Terminalia arjuna is one of the primary food plant of tropical tasar silkworm Antheraea mylitta Drury (Jolly et al, 1968). Extensive economic plantation of T. arjuna has been raised under Inter State Tasar Project for controlled rearing of A. mylitta, Hence, it required specific attention for improvement in its growth and leaf yield through effective crop management. Loknath and Shivashankar (1986) reported that deficiencies of micronutrients limit the maximum potential yield of mulberry. It has also been reported by Sinha et al., (1992) that soils of all states of India have become deficient in micronutrients. The effect of micronutrients on growth and leaf yield of tassar food plant Terminalia arjuna. Hence, the present paper deals with the effect of foliar application of micronutrients on the growth and leaf yield of T. arjuna.

MATERIALS AND METHODS

The experiment was conducted in the experimental field of Central Tasar Research & Training Institute, Nagri, Ranchi. Six micronutrients, Manganese, Zinc, Copper, Boron, Molybdenum and Iron in three doses were foliarly applied on Terminalia arjuna plants with 4' x 4' spacing. The usual package of Practices of major nutrients i.e. Nitrogen (150 kg/ha/yr), Phosphorus (50 kg/ha/yr), Potassium (50 kg/ha/yr) and Farm Yard Manure (1 kg/plant/yr) was also followed. The soil was sandy loam laterite having pH 5.3, organic carbon 0.23%, available phosphors 6.11 kg/ha and available potash 300 kg/ha. Micronutrients status of the soil is given below :

Name of micronutrients	Status in soil (ppm.)
Available Manganese	135.70
Available Copper	39.90
Available Boron :	0.37
Available Zinc :	39.60
Available Molybdenum :	252.70
Available Iron :	37.80

Randomised block design with three replications was followed for each treatment. A sample size of 30 plant per replication was considered suitable for the experiment.

Ninteen treatments including control are as follows :

T1 Zn/ha		2.5 p	0	T2 Zn/ha			0	T3 Zn/h			kg
T4 B/ha/		0.5	0	T5 B/ha/d			0	T6 B/ha			kg
T7	=	0.05	kg	T8 =	=	0.10	kg	Т9	=	0.15	kg

Mo/ha/crop	Mo/ha/crop	Mo/ha/crop
T10 = 0.50 kg	T11 = 0.75 kg	T12 = 1.00 kg
Fe/ha/crop	Fe/ha/crop	Fe/ha/crop
T13 = 2.00 kg	T14 = 4.00 kg	T15 = 6.00 kg
Mn/ha/crop	Mn/ha/crop	Mn/ha/crop

T19 = Control i.e. without micronutrients.

The experiment was conducted for two years to study the growth and leaf yield of T. arjuna. Leaf samples were collected after 45 days of the application of micronutrients in the field excluding too tender and over matured leaves from each treated plot in three replications. All the biochemical constituents of leaves except moisture were determined on oven dry basis. Moisture, total minerals, total carbohydrate and crude fibre were estimated by the method of AOAC (1955). Kjeldahl's mthod as described by Vogel (1978) was followed for the determination of total nitrogen. Crude protein was calculated by multiplying the estimated value of the nitrogen content by 6.25. Method as suggested by Arunachalam and Bandopadhyay (1984) was followed to decide the ranking of different treatments of micronutrients under study for different growth and leaf yield parameters.

RESULTS AND DISCUSSION

Foliar application of micronutrients significantly improved all the attributes of T. arjuna i.e., number of branches/plant, lngth of the branch, number of leaves/branch, length and breadth of the leaf (Table I). Results of the present study support the findings of Singhvi et al., (1996) who also observed that micronutrients when applied on mulberry resulted in increase in height of the plant, number of leaves per plant, number of shoot per plant and number of nodes per plant. The increase in plant growth may be due to the role of micronutrients in various physiological processes and favourable effects on nutrient interaction. It is also evident from Table I that there has been significant increase in leaf yield over control in case of all the micronutrients, the highest being 31.33% over control for Manganese (2.0kg/ha/crop). It was followed by Zinc (26.37% over control) and Copper (21.41% over control) when they were applied @5.0 kg/ha/crop & 0.5 kg/ha/crop respectively.

Similar trend of increased leaf yield by the application of micronutrients has been reported by Day and Gupta (1974), Loknath & Shivashankar (1986) and Bose et. al, (1994). This is due to the beneficial effect of micronutrients on the vegetative growth of plants.

Significant increase in chemical constitutents i.e., moisture, crude protin, total carbohydrate and total mineralss was also recorded due to micronutrints application (Table II). However, the increase was non-significant in case of crude fibre content. Finding of the present study corroborate the results of Loknath et al., (1986).

Data in Table III indicate the scores allotted to nineteen different treatments of micronutrients under study for growth parameters and chemical constituents by the method of Arunachalam and Bandopadhyaya (1984) where lower values signify higher ranking. It is evident from this table that among different treatments of micronutrients, treatment T13 i.e. application of Manganese @ 2.0 kg/ha/crop is the best followed by T2 (Zinc @ 5.0kg/ha/crop) & T16 (Copper @ 0.5kg/ha/crop).

From the present study it is, therefore, concluded that among all the treatments of micronutrients under study, treatment T13 i.e. application of Managanese @ 2.0kg/ha/crop is the best for the growth and leaf yield of T. arjuna.

Treatment	No. of brances/ plant	Length of the branch (cm)	No. of leaves / branch	Length of leaf (cm)	Breadth of leaf (cm)	Leaf yield (kg/plant)	Increase over control (%)
T1	7.39 bcde	170.39 bedef	230.69de	18.17 bcde	5.85 bc	4.42 cde	15.40
T2	7.55b	173.65b	248.62b	18.40ab	5.88ab	4.84b	26.37
T3	7.34bcdef	171.95bc	222.86efgh	18.28ab	5.81bcd	4.42cde	15.40
T4	7.4bc	172.50b	236.20de	18.38ab	5.86ab	4.62bcd	20.63
T5	7.21cdefg	171.80bc	223.25efg	18.20bcde	5.80bcd	4.35cde	13.32
T6	7.20efg	171.50bcd	220.97efgh	18.23abcd	5.79bcde	4.29def	12.01
Τ7	7.17efg	168.05ef	215.56fgh	17.91cdef	5.65cdef	4.32cde	12.79
T8	7.31bcdef	171.00bcde	236.94cd	18.51bcdef	5.81bcd	4.52bcd	18.02
Т9	7.20efg	171.54bcd	221.41efgh	18.13bcdef	5.78bcde	4.28def	11.75
T10	7.03ghi	168.64cdef	211.58h	17.89def	5.54fg	4.17efg	8.88
T11	7.28cdef	168.31def	225.76ef	18.33ab	5.79bcde	4.36cde	13.84
T12	6.83hi	162.50g	194.15i	17.90cdef	5.50fg	3.95fg	3.13
T13	7.85a	177.55a	267.19a	18.58a	6.06a	5.03a	31.33
T14	7.09fgh	167.26f	214.15gh	17.85fg	5.63def	4.25ef	10.97
T15	6.86hi	163.58g	194.90i	17.80fg	5.59ef	3.97fg	3.66
T16	7.44bcd	173.04b	244.80bc	18.25abc	5.87ab	4.65bc	21.41
T17	7.45bcd	171.67bcd	241.47bcd	18.40ab	5.81bcd	4.52bcd	18.02
T18	7.42bcde	171.42bcde	223.96efg	18.20bcde	5.75bcde	4.28def	11.75
Γ19 (control / Γemoin)	6.78i	159.00h	188.50i	17.55g	5.38g	3.83g	
LSD at 5%	0.26	3.38	11.51	0.35	0.20	0.34	

Table I. Influence of micronutrients on the growth and yield of Terminalia arjuna.

Figures with different alphabets differ significantly. Average values are based on two years data.

-

Treatment	Moisture (%)	Crude protein (%)	Total carbohydrates (%)	Crude fibre (%)	Total minerals (%)
T1	70.83 bcdef	12.25gh	15.00g	8.80a	7.37cd
T2	71.33ab	14.50bc	17.00b	8.60a	8.00a
T3	70.30efg	13.50d	16.20cd	8.70a	7.67b
T4	70.43defg	12.75fg	16.00de	8.70a	7.67b
T5	70.17g	13.5cd	16.50c	8.70a	7.67b
T6	70.17g	13.00e	16.00de	8.75a	7.67b
T7	70.67cdefg	12.50fgh	15.00g	8.80a	7.27de
Т8	70.50cdefg	14.00c	16.00de	8.75a	7.90a
Т9	70.30efg	13.00e	15.60f	8.80a	7.57bc
T10	70.17g	12.25gh	15.00g	8.80a	7.10ef
T11	70.40efg	12.50fgh	15.70ef	8.70a	7.93a
T12	71.00bcd	12.00hi	14.80gh	8.75a	7.90a
T13	71.83a	15.63a	17.50	8.90a	8.00a
T14	70.30efg	15.00b	16.02de	8.60a	7.67b
T15	70.20fg	13.00e	14.90g	8.80a	7.33d
T16	71.10bc	14.00cd	16.50c	8.60a	8.00a
T17	70.90bcde	13.50de	15.80ef	8.70a	7.33d
T18	70.20fg	13.00ef	15.05g	8.70a	7.33d
T19 (control / Temoin)	70.03g	11.50i	14.50h	8.50a	7.00f
LSD at 5%	0.65	0.60	0.32	NS	0.21

Table II. Chemical composition of Terminalia arjuna leaf as influenced by different treatments.

NS : denotes not significant.

Figures with different alphabets differ significantly. Average values are based on two years data.

Treatment	Growth parameters						Chemical constituents					
	No. of branches / plant	Length of the branch	No. of leaves / branch	Length of leaf	Breadth of leaf	Leaf yield	Moisture	Crude protein	Total carbohydrate	Crude fibre	Total minerals	Total scores scores and ranks
T13	0.11	0.13	0.11	0.14	0.14	0.14	0.14	0.11	0.13	1.00	0.17	2.32 (I)
T2	0.22	0.25	0.22	0.21	0.21	0.29	0.21	0.28	0.25	1.00	0.17	3.31 (II)
T16	0.33	0.25	0.28	0.33	0.21	0.36	0.36	0.39	0.38	1.00	0.17	4.06 (III)
T4	0.28	0.25	0.50	0.21	0.21	0.43	0.79	0.72	0.56	1.00	0.33	5.28 (IV)
Т8	0.44	0.44	0.39	0.57	0.43	0.43	0.71	0.33	0.56	1.00	0.17	5.47 (V)
T17	0.33	0.38	0.33	0.21	0.43	0.43	0.50	0.50	0.69	1.00	0.67	5.47 (V)
T3	0.44	0.31	0.72	0.21	0.43	0.57	0.88	0.44	0.44	1.00	0.33	5.77 (VI)
T5	0.56	0.31	0.67	0.50	0.43	0.57	1.00	0.44	0.38	1.00	0.33	6.19 (VII)
T11	0.50	0.63	0.61	0.21	0.50	0.57	0.88	0.78	0.69	1.00	0.17	6.54 (VIII)
T1	0.39	0.50	0.50	0.50	0.36	0.57	0.57	0.83	0.88	1.00	0.58	6.68 (IX)
T6	0.56	0.38	0.72	0.36	0.50	0.71	1.00	0.56	0.56	1.00	0.33	6.68 (IX)
T9	0.56	0.38	0.72	0.57	0.50	0.71	0.88	0.56	0.75	1.00	0.42	7.05 (X)
T18	0.39	0.44	0.67	0.50	0.50	0.71	0.93	0.61	0.88	1.00	0.67	7.30 (XI)
T14	0.78	0.75	0.83	0.93	0.71	0.71	0.88	0.22	0.56	1.00	0.33	7.70 (XII)
T7	0.56	0.69	0.78	0.64	0.64	0.57	0.71	0.78	0.88	1.00	0.75	8.00 (XIII)
T12	0.94	0.88	1.00	0.64	0.93	0.93	0.43	0.94	0.94	1.00	0.17	8.80 (XIV)
T10	0.89	0.50	0.89	0.71	0.93	0.86	1.00	0.83	0.88	1.00	0.92	9.41 (XV)
T15	0.94	0.88	1.00	0.93	0.79	0.86	0.93	0.56	0.88	1.00	0.67	9.44 (XVI)
T19	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	11.00 (XVII)

Table III. Scoring of nineteen different treatments of micronutrient for growth parameters and chemical constituents.

REFERENCES

- Arunachalam V. & Bandopadhyay A. (1984). A method to make decisions jointly on a number of dependent characters. Indian J. Genet., 44(3): 413-424.
- [2] Association Of Official Agricultural Chemists (AOAC) (1955) Official method of analysis, 8th edition, Washington, 99, 118-119, 368, 373.
- [3] Bose P.C., Singhvi N.R. & Dutta R.K. (1994) Effect of micronutrients on above ground biomass and economics of mulberry leaf production. J. Seric.2 (1 & 2): 23-26
- [4] Day D & Gupta B.K. (1974) Effect of micronutrients on the yield and chemical composition of mulberry leaf. Ann. Rep. Central Sericultural Research Station, Berhampore. P. 81-82.
- [5] Jolly M.S.; Chaturvedi S.N. And Prasd S. (1968) A survey of tasar crops in India, Indian. J. Seric., 7 (I): 56-57.
- [6] Loknath R. And Shivashankar K. (1986) Effect of foliar application of micronutrients and Magnesium on the growth, yield and quality of mulberry Morus alba. Indian. J. Seric. 25 (I): 1-5.
- [7] Singhvi N.R., Bose P.C., Munirathnam M., Sinha A.K.; Subbaswami M.R.; Himantharaj M.T. And Dutta R.K. (1996). Effect of micronutrients on growth and quality of mulberry leaf. Bull Sericult. Res. 7:11- 14.
- [8] Sinha A.K., Reddy M.M., Subbbaswamy M.R. And Dutta R.K. (1992).
- [9] Micronutrients and their role in mulberry nutrition. Indian. Silk, 31 (7): 43-45.
- [10] Vogel A. I. (1978). A text book of quantitative inorganic analysis including elementary instrumental analysis 4th edition, Longman Group Ltd., Londan. : 926 p.

