
© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 67

NEW-GEN BIG DATA APPLICATIONS

T. Suneetha,

Lecturer,

Department of Computer Science and Engineeriing,

 Loyola Academy Degree and PG College, Alwal, Secunderabad, India.

Abstract : Mobile applications, various real-time analytics applications such as real-time inventory that give you

suggestions, fraud detection, risk analysis, etc emphasize the need for distributed data management systems that can

handle fast transactions and analytics concurrently. Different optimizations and architectural decisions in a system are

produced by efficient processing of transactional and analytical requests. The target of this paper is a Wildfire system,

with Hybrid Transactional and Analytical Processing (HTAP). To enable large-scale data processing with different

types of columnar data processing and complex analytical requests, this Wildfire leverages the Spark ecosystem in

order to enable fast transactions and analytics concurrently.

Index Terms – Big Data Platforms, Data Processing, Transactions, OLTP Interface.

I. INTRODUCTION
The classical and strongest ACID properties are ensured by the relational DBMSs with its transactions. From the way they evolved, the

literature defined about the isolation of concurrent transactions on which how to achieve strict serializability and also how to achieve consistent

commits of distributed transactions with Two-Phase Commit Protocol.

In many transactions, the point queries facilitate the accessing of individual rows not with just a primary key by applying many indexes on any

column.

For speeding long-running queries Structured Query Language (SQL) from traditional DBMSs and robust optimization of it, and multi-node

parallelism technologies for more complex analytics queries are implementing. With a sophisticated exploitation of compression, multi-threaded

parallelism, large main memories, and especially column stores, DBMSs have accelerated analytics queries more recently [22, 26, 30, 33].

 Replication of data is often provided as an afterthought for disaster recovery, with availability usually limited to those

nodes having physical connectivity to the single copy and dependent upon the coordinator of Two-Phase Commit being up.

Generally, the CAP Theorem states that strict consistency makes availability very hard [23]. Scale-out beyond a few hundred nodes

of relational DBMSs is rare, and elasticity is limited because data is pre-allocated to, and stored on, a pre-determined (set of)

nodes. These weaknesses largely motivated the recent develop- ment of Big Data Platforms such as Hadoop [5]and now Spark [11],

which were designed almost exclusively for per- forming complex and long-running analytics, such as Machine Learning, cost-

effectively on extremely large and diverse data sets. These systems promote a much more open environment, both of functions and

de facto standard data formats such as Parquet, allowing any function to readily access any data without having to go through a

centralized gate-keeper. By routinely replicating data by default, usually asynchronously (e.g., with eventual consistency

semantics), these systems built in high availability, scale-out, and elasticity from their inception.

These weaknesses largely motivated the recent develop- ment of Big Data Platforms such as Hadoop [5]and now Spark [11], which

were designed almost exclusively for per- forming complex and long-running analytics, such as Machine Learning, cost-

effectively on extremely large and diverse data sets. These systems promote a much more open environment, both of functions and

de facto standard data formats such as Parquet, allowing any function to readily access any data without having to go through a

central- ized gate-keeper. By routinely replicating data by default, usually asynchronously (e.g., with eventual consistency se-

mantics), these systems built in high availability, scale-out, and elasticity from their inception.

However, Big Data platforms have their own shortcomings. Transactions (especially update-in-place) and point queries are largely

ignored in Spark, thereby relegating in- gest of data to simpler key-value stores such as Cassandra [4] and Aerospike [1]. Some of

these stores may provide the high ingest rates required to capture data from new Inter- net of Things (IoT) applications, but to

achieve this, have relaxed isolation levels and have embraced weaker eventual consistency of copies on independent nodes. They

also in- dex only a primary key, limiting point queries to those that specify that key. Lastly, they have limited or no SQL func-

tionality, which is often added as almost an afterthought (e.g., Hive [34]), with weak query optimizers.

This paper argues that the Big Data world needstrans- actions. We present Wildfire, a design and initial prototype to bring ACID

transactions, albeit with a weaker form of snapshot isolation, to the open analytics world of Spark. Wildfire exploits Spark for

performing analytics by: (1) utilizing a non-proprietary storage format (Parquet), open to any reader, for all data; (2) using and

extending Spark APIs and the Catalyst optimizer for SQL queries; and (3) automatically replicating data for high availability, scale-

out performance, and elasticity (creating an AP system). Wildfire augments these Spark hallmarks with critical features from the

traditional DBMS world, including: (1) ACID transactions with snapshot isolation, making the latest committed data immediately

available to analytics queries; (2) the abil ity to index any column for fast point queries; (3) exploiting recent advances for

accelerating analytics queries by orders of magnitude, including compression on the fly, cache-aware processing, automatic creation

and exploitation of synopses, (a form of) column-wise storage, and multi-threaded paral- lelism; and (4) enterprise-quality SQL,

including more ro- bust optimization and time travel that permits querying his- torical data AS OF a particular time.

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 68

Figure 1: Wildftre Architecture.

II. WILDFIRE ARCHITECTURE
 Figure 1shows the Wildfire architecture, which has two major pieces: Spark and the Wildfire engine. Spark serves as the main

entry point for the applications that Wildfire targets, and provides a scalable and integrated ecosystem for various types of analytics

on big data, while the Wildfire engine accelerates the processing of application requests and enables analytics on newly-ingested

data.

a. Processing of requests
All requests to Wildfire go through Spark APIs, except for a native OLTP API for the Wildfire engine, discussed later. Each request

spawns Spark executors across a cluster of ma- chines whose nodes depend upon the type of that request. The majority of the nodes

in the cluster execute only analyt- ical requests, and require only commodity server hardware (the solid arrows in Figure 1show the

request and data flow in these nodes). Other, beefier nodes, with faster local persistent storage (SSDs or, soon, NVRAM) and

more cores for increased parallelism, handle concurrently both transac- tions and analytical queries on the recent data from those

transactions (the dashed arrows in Figure 1show the re- quest and data flow in these nodes).

Wildfire’s engine is based on columnar processing that is similar to DB2 with BLU Acceleration [33]. Each Wild- fire engine

instance daemon is connected to a Spark Execu- tor. There are two types of engine daemons: stateful and stateless. The stateful

daemons handle both transaction and analytics requests against the latest data. The stateless dae- mons, on the other hand, execute

only analytics queries on the (much more voluminous) older data.

To speed ingest through parallelism, non-static tables in the system are sharded across nodes handling transactions based upon a

prefix of a primary (single-column or composite) key. A table shard is also assigned to (a configurable number of) multiple nodes

for higher availability. A state- ful engine daemon on a node is responsible for the ingest, update, and lookup operations on the data

assigned to that node, whereas the stateless engine daemons can read any data that is in the shared file system for analytical queries.

A distributed coordination system (e.g., ZooKeeper 1) man- ages the meta-information related to sharding and replica- tion, and a

catalog (e.g., HCatalog 2) maintains the schema information for each table.

Wildfire openly allows any external reader to read data ingested by the Wildfire engine using Spark APIs without involving

the Wildfire engine component, but that reader will be unable to see the latest transactional data stored on the stateful

daemons. Further, to satisfy applications that need huge ingest rates, Wildfire provides a native API for the engine, where the

insert requests to each table are kept as prepared statements after their initial invocation.

b. Processing and storage of data
 Figure 2 illustrates the data life cycle in a shard replica in Wildfire. Each transaction in the Wildfire engine keeps its un-comitted

changes in a transaction-local side-log com- posed of one or more log blocks. Each log block can contain transactions for only one

table. At commit time, the trans- action appends its side-log to the log, which is kept both in memory and persisted on disk (SSD or

NVRAM). In addi- tion, this side-log is copied to each of the other nodes that is responsible for maintaining a replica of that

shard’s data, for availability.

While any replica of a shard can process any transactional request for that shard, one of the replicas periodically in- vokes a

grooming operation. This operation scans the log and groups together the log blocks from multiple (commit- ted) transactions

for the same table, creating larger groomed blocks containing data only from a single table. In addition to merging log blocks,

grooming also performs some data cleansing that will be discussed in detail later. The groomed data blocks are then flushed to

both the local SSD for fast reads and a distributed file system (e.g., HDFS [6], S3 [3],Swift [16],so that other nodes can also

access them. After a grooming pass, the groomer prunes the log records it has successfully groomed.

applications

spark
executor

spark
executor

spark spark
executor executor

spark
executor

spark
executor

spark
executor

spark
executor

spark
executor

wildfire engine
(stateless daemon)

wildfire engine
(daemon)

SSD/NVM

wildfire engine
(daemon)

 SSD/NVM

shared file system

wildfire engine

(stateless daemon)

high‐volume

transactions

analytics
can tolerate slightly stale data

requires most recent data

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 69

Figure 2: Data lifecycle in Wildftre.

The input source for queries in the Wildfire engine is both the (shared) groomed data and the (shard-local) log. In other words,

each engine instance can read any groomed data regardless of its shard, but can only access log records for shards for which it is

responsible. To avoid potential du- plicates in this input stream while scanning both the log and groomed blocks, the engine checks

the last groomed point in the log at the beginning of each query. The isolation level for queries who demand the latest data (dark

red arrows in

 Figure 1) is snapshot isolation.

All tuples of a table are stored using the Parquet [9]for- mat in both log and groomed blocks. Therefore, each block contains all

column values for a set of rows of the table, and the values are stored in column-major format within the block, facilitating

column-store-like access to just those pages containing columns referenced in a query, for larger, paginated blocks. The Parquet

layout and local compression allow the data blocks to be fully self-contained.

III. TRANSACTIONS
Despite adopting columnar data procesing, the Wildfire engine is not just a query processor or accelerator for the Spark

ecosystem. It is also designed to support transactions with inserts, updates, and deletes.

Wildfire targets high availability across multiple data cen- ters, with tolerance for network partitioning. Therefore, it cannot give

consistency semantics in which each read sees all prior writes [23]. Existing highly available systems such as

Cassandra [4]normally provide either eventual consistency or forced multi-server quorum reads.

However, eventual consistency is painful for the application- writer. Consider two successive queries from an application. The first

query may get results that are missed in the second query if it is routed to an alternate server that lags behind. Quorum reads, which

perform redundant reads from multi- ple servers, are a reasonable alternative. However, they are not only infeasible for OLAP-style

transactions that may read thousands, millions, or billions of records, but also costly for single-key fetch queries.

Wildfire targets both high availability and ACID, which is infeasible. Therefore, Wildfire adopts last-writer-wins (LWW)

semantics for concurrent updates to the same key and snapshot isolation of quorum-readable content for queries, without having to

read the data from a quorum of replicas to satisfy a query. The remainder of this section describes some of the design choices and

methods to reach this goal.

a. Writes: Inserts, Updates, and Deletes
It is impractical to send changes directly to the shared file system, which is typically append-only and optimized for large

blocks. Therefore, as Section 2describes, Wild- fire first writes (and persists at commit) the transactional changes to local

storage. Only a background grooming pro- cess propagates them to the shared file system, in a batched fashion.

The logs for a table in Wildfire are sharded across pro- cessing nodes using a key composed of one or more columns of the table. In

addition, for high availability, these shard logs are replicated to multiple nodes (a minimum of 3). The writes (inserts, updates,

deletes) of a transaction are sent to any node that contains a shard replica. At commit, the changes for the transaction are applied to

the local logs and then replicated.

i. Replication
In the case of synchronous replication (at least to a quo- rum) Wildfire faces the danger of losing availability. Asyn- chronous

replication, on the other hand, might suffer from inconsistency – e.g., a query that immediately follows a transaction may not see

that transaction’s writes if it is routed to a different node than the transaction.

In Wildfire, every (write) transaction performs a status- check query at the end: one that simply waits until the writes of that

transaction to be replicated to a quorum of nodes. Similarly, the read-only queries return quorum- replicated data.

At a poorly connected node, the status-check may time out. To sustain high-availability in this case, Wildfire re- turns to the client

with a pending message, indicating that the transactions position (in the serializable order of trans- actions) is unknown until a

future point in time when the status-check succeeds. This behavior mimics the best prac- tice in the financial industry, where the

ATM transactions are allowed to proceed during network disconnection, with a disclaimer that the order of transactions are going

to be resolved subsequently.

This delayed-commit semantics does come at a high cost: one cannot check integrity constraints at commit. Hence, concurrent

updates to the same key based on prior values are going to suffer from the lost-update problem. Wildfire resolves this by adopting

the LWW semantics as mentioned above.

In the case where a client receives a time-out message, Wildfire offers a SyncWrite option. If the client confirms that their

writes are idempotent, Wildfire automatically reis- sues any timed-out writes on other nodes, until they succeed. The kind of

applications that require AP from CAP, tend to have writes that are idempotent. If a non-idempotent write times out or the

client connection breaks, the client is left hanging, as there is no easy way to figure out whether that write has succeeded.

transaction side‐logs
(uncommitted)

main‐memory

log (committed)

persistent log

SSD/NVM

groomed data
(cached)

shared file system

groomed data

in
d
e
x

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 70

≤

ii. Shards
Each table must have a primary key that is made up of a subset of the columns of the sharding key. This is sligtly different than

the constraint of having a prefix of the primary key as the sharding key like systems like Megastore [20]and

Cassandra [4]adopt. Inserts of pre-existing keys are treated as updates, and deletes are treated as inserts of tombstones. Any update,

delete, or insert results in just an insert of a new version, with a begin and end timestamp (beginTS and endTS. The beginTS is

just the commit timestamp, and the endTS is the beginTS of the next version of that key.

Wildfire’s client-side logic accepts and partitions bulk in- sert requests based on the sharding key to determine the tar- get

shard(s). These partitioned inserts are sent to a replica for each shard with some affinity, but with the ability to automatically

fail-over to another replica to handle error scenarios. The partitioned inserts are cached by the client library until a SyncWrite is

requested and successful. Should a failure occur in this phase, the client library will re-submit the cached partitioned inserts.

Should memory pressure oc- cur at the client, the library itself will trigger a SyncWrite request.

iii. Conflict Resolution
Each shard has a designated groomer that runs at one of its replica nodes. The groomer merges, in time order, the logs from

each replica of the shard and creates Parquet- format files in the shared file system for the data modifica- tions. Indexes on the

primary keys are built during grooming to detect multiple versions of the same data at a later phase called post-grooming. This

periodic post-grooming operation performs conflict resolution where it sets the endTS of the previous version to the beginTS of

next version for records with the same primary key. This post-grooming operation also replaces the files in the shared file system as

needed. Queries which find unresolved duplicates would then know to perform special handing by looking up these keys to de-

termine the correct version to use, thus implementing LWW semantics.

Each instance of Wildfire tracks the log replication points for all replicas and computes a current high-water mark of the data that is

quorum-visible. Queries are then able to achieve quorum-consistent reads without accessing the same data at multiple replicas.

The beginTS is a local wall-clock time of the commit: but changes from different nodes can replicate at arbitrary speeds. So

changes are ordered within each grooming cycle by a commit timestamp, but we use the groom cycle time as a high-order

timestamp for the set of groomed changes, thus eliminating any need to re-order late replicated changes back into the already

groomed ordering of history. This, in a sense, pushes the effective commit time to the quorum readable time.

b. Reads
The log (local or replicated) has only committed trans- actional changes. However, queries (including the grooming query) need to

see all quorum-written changes. So we use a high-water mark of quorum-visible portions of the replicated logs. Depending on the

currency of data needed by queries, groomed data may be all that is needed. However, certain classes of queries read the log entry

changes along with the groomed data. The grooming process itself reads only the log entry changes to perform its processing.

Snapshot isolation needs a system-generated predicate: beginTS snapshotTS < endTS. The snapshotTS is usually the transaction

start time, but can be changed to allow time- travel. The begin timestamp, as stated earlier, is set when the record is committed and

then updated again at grooming time to pre-pend the groom timestamp. The end timestamp is initialized to infinity, except in the

case of deletes, and left

unchanged at groom time unless more than one occurrence of the primary key occurs in the grooming cycle, in which case the

earlier entries will have their end timestamps set to the begin timestamps of their replacements.
This does not address changes to the end timestamp due to updates of older rows that had already been groomed ear- lier. Those are

addressed in two parts. First, the periodic post-grooming process will rewrite blocks, filling in the end timestamp based on key. To

handle changes in tail blocks, Wildfire maintains a hash table tracking key versions (be- ginTS and rowID). Queries probe this hash

table if the end timestamp is infinity for a record.

IV. ANALYTICS
Apache Spark provides an extensive ecosystem for big data analytics, streaming, machine learning, and graph pro- cessing. We

integrate Wildfire into the Spark environment in order to build on top of its existing capabilities. Wild- fire enhances Spark with

the missing support for OLTP and improves its OLAP performance.

In this section, we describe the major extensions of Wild- fire to Spark: (1) the new OLTP interface OLTPContext,

(2) extensions to the Spark Catalyst optimizer and the ex- isting OLAP SQLContext to enable the push-down of queries into the

Wildfire engine, and (3) our support of user-defined function (UDF) and user-defined aggregate functions (UDAF) in Wildfire.

4.1 New Interface for OLTP
In order to provide HTAP functionality, we need support for OLTP operations, i.e., point queries and inserts or up- serts. However,

this functionality is currently missing in the Spark ecosystem. Wildfire builds a new OLTP interface that can be used by Spark

applications, called OLTPContext. For now, this interface is kept separate from Spark’s existing OLAP interface, SQLContext.

The two interfaces may be unified in future versions of Spark. Our OLTP API plays very well with the different components of

Spark. For exam- ple, we can use it together with Spark Streaming for high- rate inserts from streaming data sources. We can also

use this OLTP API together with Spark SQL for HTAP.

The OLTPContext accesses and caches the coordination service to retrieve the configuration state of the backend Wildfire

cluster, i.e., the set of Wildfire engines and the shards they host, as well as a reference to the catalog ser- vice. In order to route a

transaction to the right shard, the OLTP needs to uniquely identify the shard, e.g., through the sharding key for an insert or a

statically evaluable pred- icate in a point query. Our initial prototype does not yet support transactions that span multiple shards, but

plan in the future. Once the shard is determined, the OLTPContext routes the reads and writes to the appropriate Wildfire en-

gines that host the corresponding shared or shard replicas. The context obtains the current shard-to-node assignment from the

coordination service. If the OLTPContext is unable to identify the shard from the query, e.g., the point-query does not have a

predicate on the sharding key, or does not identify a unique shard, or cannot be statically evaluated, the OLTPContext broadcasts

point queries to all Wildfire en- gines. This, however, comes at a higher cost and breaks transactional isolation in our current

prototype, as it may result in a cross-shard transaction.

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 71

Figure 3: Bottom-up build up of the pushdown plan

We also handle node failures in the OLTPContext. For example, if a node that is responsible for the shard of a number of rows

that are being inserted fails, we try to re- insert those rows to one of the replica nodes and update the host-to-shard mapping. It can

push down even more complex operations such as joins and partial aggregations, as well as user-defined functions and aggregates.

These extensions to the Data Sources API and the Cat- alyst optimizer are general and not just for Wildfire. Ar- bitrarily complex

queries can be pushed down to any data source that implements our API extensions, as this approach allows the source to decide

what plans can be pushed down. With this general pushdown approach to a remote source, we essentially enable Spark to be a

federation engine for big data systems.

Extension to Data Sources API.
To allow more complex pushdown, we introduce a new type of data source, called PushDownSource, to the Data

Sources API. The API provided by PushDownSource allows a data source to express its pushdown ability to the Catalyst optimizer.

Given a Spark logical plan (a tree-structured logical query plan), a data source can express, through this API, whether the

entire logical plan can be executed in the source or not. If a plan cannot be executed in the source, this API further provides a way

to examine whether individual expressions inside a plan can be supported by the source, which is important to allow partial push-

downs (details will be provided below).

Extension to Catalyst Optimizer.
We also extend Spark’s Catalyst optimizer to enable the pushdown analysis for a data source that implements the PushDownSource

API. More specifically, we add a number of rewrite rules to the logical optimization phase of the query.

Extensions to Spark SQL for OLAP
For OLAP, we want users to be able to query Wildfire tables using the same Spark SQL interfaces (either via Spark DataFrames

or SQL) as they do for regular Spark tables. Moreover, we want to be able to use both Wildfire tables and normal Spark tables

in the same query, e.g., joining a Wildfire table with a JSON table.

We achieve this seamless integration by extending both Spark SQL’s Data Sources API and the Catalyst query opti- mizer. The

Data Sources API provides a way to access data sources outside Spark through Spark SQL in an easy and pluggable manner.

Spark’s Catalyst optimizer currently is able to push down projection and filtering operations to the data sources, if supported by the

sources, through the Data Sources API. However, our Wildfire engines provide more advanced query capabilities for Spark SQL to

leverage. We

optimization. Each rule rewrites a query plan to a logically equivalent plan, in the usual way. Together, they identify and build up

the pushdown plan in a bottom up fashion, as shown in Figure 3. We start with leaf nodes that are PushDownSource. They

represent the base tables in the tar- get data source. Obviously, they can be pushed down to the source. Then we look at the parent

of each PushDownSource. By using the extended API, Catalyst can know whether the subquery represented by the parent can be

pushed down to the source or not. If so, we construct a new leaf node to replace the parent, and track the pushdown plan inside the

leaf node. In case of a join, we push down the join only if both children are pushed down already, and the join itself can be pushed

down (e.g., colocated joins). This process is continued until a fixed point is reached (no change to the logical plan occurs).

In a number of cases, we cannot push down the entire subquery represented by a tree node, but we can rewrite the plan so that

part of the subquery can be pushed down.

Partial Aggregation Pushdown: As many data sources, including Wildfire, do not have the ability to transfer data among themselves

for query processing, aggregate functions cannot be fully pushed down. In this case, we rewrite an aggregation plan into a partial

aggregation followed by a global aggregation, and push down the partial aggregation. For example, to support count(.) for

Wildfire, it is rewritten into a partial count(.) that is executed on all the Wildfire engines, followed by a global sum(.) that is

carried out in Spark.

Partial Projection Pushdown: For projection, if the list of column expressions contains one or more expressions not pushdown-able,

we split the projection plan into two consecutive projections. The first is pushed down to the source with the basic columns needed

for all the expressions, and the second is executed in Spark for evaluating the actual expressions.

Partial Predicate Pushdown: If a conjunctive predicate contains one or more sub-predicates that cannot be pushed down, we only

push down the pushable sub- predicates, and form a new selection node with the non-pushable sub-predicates.

Using OLTPContext and SQLContext for HTAP
Applications that require HTAP instantiate both the new OLTPContext and the SQLContext in the Spark driver. This allows them

to submit analytics queries through our ex- tended SQLContext, and point queries as well as inserts via the OLTPContext to

Wildfire. An OLAP query is assigned a snapshot that is based on the required maximum tolerable staleness of the data. If that

staleness is shorter than the grooming interval (typically just a second or two, but this is configurable), the query is either delayed

until grooming has caught up to the snapshot, or the query must be sent to the Wildfire engine nodes to be processed from the logs

on the node-local SSDs. Unless shard (partition) elimination can be applied, the query must be sent to all Wildfire engine nodes.

Therefore, analytic queries with such short staleness requirements are more expensive and may negatively affect the transaction

throughput of pure OLTP queries. This, however, is no different from traditional database systems for which admittance control is

join join

JSON

Relation
join JSON

Relation

join

selection projection selection projection

PushDown PushDown

Source Source

PushDown

Source

PushDown

Source

join

JSON

Relation

join

selection projecton

PushDown PushDown

Source Source

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 72

used to strike a balance between the resource usage of analytical and transactional queries. OLAP queries that can tolerate a

staleness that is longer than Wildfire’s grooming interval can be processed more inexpensively with data read from the shared file

sys- tem by any nodes.

User-defined Functions and Aggregates
A key feature in Spark and Spark SQL is the extensibility from the end-user’s perspective. User-defined scalar func- tions (UDFs)

and user-defined aggregate function (UDAF) can be defined and used in queries. The use of anonymous functions (lambdas) in

Java 8 and Scala makes this extremely powerful while being easy to use. It is therefore crucial for Wildfire to also support UDFs

and UDAFs and to be able to execute them inside the engine. Scalar UDFs can be used in the select and the where clause of

queries. When

Figure 4: Current Wildfire prototype.
used inside aggregate functions and predicates, or are user- defined aggregation function themselves, they can reduce the amount of

data returned to Spark. UDFs can contain logic that is hard to express in SQL (e.g., decision trees, machine learning models used

for scoring, or even deep learning mod- els). Wildfire supports UDFs and UDAF in Java bytecode from Java and Scala and executes

them in embedded Java virtual machines that run inside the Wildfire engines. Since the Wildfire engines are implemented in a

native code envi- ronment, it will be easier to add hardware accelerators such as GPUs and FPGAs in order to run UDFs with even

more complex models.

V. PROTOTYPE
We presented the initial prototype of Wildfire in SIGMOD 2016 [21]. Since then we enhanced this prototype toward our end goal

(depicted in Figure 1). Figure 5shows the current state of Wildfire.

SparkSQL is the entry point for analytical applications, and a Scala-based interface is used for OLTP applications (currently just

ingest requests). As mentioned in Section 2.1, Wildfire also provides a native API for the engine, which was used during the

SIGMOD demo for ingest requests as our scala API for OLTP was primitive then. ZooKeeper is used as the coordination service

and HCatalog is the primary source for catalog information. The engine and client layer contact ZooKeeper for sharding

information. The engine also contacts ZooKeeper to learn about the state of replicas and the last groom points for each shard. The

fast local stor- age for the engine, where heavy ingest requests are handled concurrently with analytical requests, is SSDs.

Grooming writes the data blocks both to SSDs and the shared file sys- tem. The blocks in SSDs are evicted based on an LRU

policy (groom time) and the space budget of the SSDs. The shared distributed storage system used in the prototype is an object

store with Alluxio [2]serving as a cache on top.

We are currently working on exposing the OLTP interface of the Wildfire engine to Spark, so that applications running inside Spark

can have access to the full HTAP functionality. In addition, we are extending the Wildfire engine to support more complex data

types (e.g., JSON, arrays). Lastly, we are improving the indexes in Wildfire to support fast point queries on both primary and

secondary indexes, and working on enabling more complex transactions.

VI. RELATED WORK
Over the last decade, although several SQL processing systems have been developed, especially in open-source [18], none process

both analytical as well as transactional work- loads. Most of these systems, including Hive [34], Impala

[29], HAWQ [25], Big SQL [27], and Spark SQL [19], have

all focused on analytics over HDFS data initially. Since HDFS and Hadoop’s focus was batch processing, data was also ingested in

batches. For applications that required up- dates and faster insertion rates, noSQL systems provided an alternative. HBase [7,

35]and Cassandra [12, 4]are two of the most popular noSQL systems for this purpose. How- ever, this

led to lambda architectures where transactional systems were separate from analytical systems. The pur- pose of Wildfire is to

provide a single unified platform for both transactional and analytical processing.

Over the years, some of these initial systems, like Hive and Impala, also included support for updates. As of very recently, Hive

supports ACID transactions [13], but with several limitations, such as not supporting explicit transac- tion begin, commit, and

rollback statements. The integra- tion of Impala [29]with the storage manager Kudu [8], on the other hand, allows the SQL-on-

Hadoop engine to handle updates and deletes reducing the pitfalls of using HDFS and HBase for transactions and analytics,

respectively. HAWQ [25]supports snapshot isolation, as it uses PostgreSQL as its underlying processing engine. It only allows

appends, and transactions can only commit on the master node, a central fixed node. Hence, these systems are not meant to support

a high volume of transactions but rather batch inserts and slowly changing dimensions that are typical in classical data warehouse

workloads.

OLAP application
(SparkSQL)

wildfire SQL context

ingest application
(Scala program)

wildfire OLTP context

spark spark zookeeper

executor executor
hcatalog

spark
executor

wildfire engine
(stateless daemon)

Alluxio

native OLTP API
wildfire engine (daemon)

SSD

Alluxio

cloud object store

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 73

There are other systems, like Splice Machine [17]and Phoenix [10]that allow updates and transactions. These systems provide

SQL processing for data stored in HBase tables, and as a result rely on HBase for the updates. Splice

Machine even supports ACID transactions. However, these

systems do not provide fast OLAP capabilities because the scans over HBase tables are quite slow. Most often, the data is

transformed into a more analytical-friendly format, such as Parquet, and processed by one of the other SQL engines, such as Hive,

Impala, or SparkSQL. This data copying is both error-prone and costly, and also it does not allow ana- lytics to work on the latest

data.

Oracle [31], SAP HANA [26], and MemSQL [14]are among the systems that support hybrid analytical and trans- actional

workloads as stand-alone engines, but they use dif- ferent formats for data ingestion and analytics. As a re- sult, the latest

committed data is not available to analytical queries right away, or else accessing the latest data requires a costly join between row-

store and column-store tables. In Wildfire, by using a single data format for both data in- gestion as well as analytics, we enable

analysis on the latest committed data right away. HyPer [28]also supports hybrid workloads using multi-version concurrency

control, and ex- ploiting machine code generation with LLVM for very opti- mized single-threaded performance. However, it is not

clear how HyPer behaves in a large-scale distributed setting.

The data lifecycle of Wildfire going from memory to SS- D/NVM and to a shared file system is inspired by the de- sign for data

movements and compactions in systems like BigTable [24]and MyRocks [15]. However, Wildfire is not based on LSM-trees [32].

VII. CONCLUSIONS
We presented the Wildfire system, which is designed to handle high-volume transactions while executing complex analytics queries

concurrently in a large-scale distributed big data platform. The analytical queries are issued via the Spark SQL API, and a Spark

Executor is connected to Wildfire’s columnar engine on each node. The connection to Spark exposes the analytics capabilities of

Wildfire to the entire Spark ecosystem, including graph processing and machine learning. Wildfire also extends Spark’s Catalyst

optimizer to perform complex push-down analysis, and generates compensation plans for the remaining portions of the analytics

queries that cannot be pushed down into Wildfire’s columnar engine.

VIII. REFERENCES

[1]Aerospike. http://www.aerospike.com/.
[2]Alluxio. http://www.alluxio.org/.

[3]Amazon S3. https://aws.amazon.com/s3/.

[4]Apache Cassandra. http://cassandra.apache.org.

[5]Apache Hadoop. http://hadoop.apache.org/.

[6]Apache Hadoop HDFS. http://hortonworks.com/apache/hdfs/.

[7]Apache HBase. https://hbase.apache.org/.

[8]Apache Kudu. https://kudu.apache.org/.

[9]Apache Parquet. https://parquet.apache.org/.

[10]Apache Phoenix. http://phoenix.apache.org/.

[11]Apache Spark. http://spark.apache.org/.

[12]DataStax Spark Cassandra Connector. https: //github.com/datastax/spark-cassandra-connector.

[13]Hive Transactions. https://cwiki.apache.org/ confluence/display/Hive/Hive+Transactions.

[14]MemSQL. http://www.memsql.com/.

[15]MyRocks.https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write- optimized-
mysql-database/.
[16]OpenStack Swift. https://www.swiftstack.com/product/openstack-swift.

[17]Splice Machine. http://www.splicemachine.com/.

[18]D. Abadi, S. Babu, F. Ö zcan, and I. Pandis. Tutorial: SQL-on-Hadoop Systems. PVLDB, 8:2050–2051, 2015.

[19]M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,

A. Ghodsi, and M. Zaharia. Spark SQL: Relational Data Processing in Spark. In SIGMOD, pages 1383–1394, 2015.

[20]J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.

Megastore: Providing Scalable, Highly Available Storage for Interactive Services. In CIDR, 2011.

[21]R. Barber, M. Huras, G. M. Lohman, C. Mohan, R. Mueller, F. Ö zcan, H. Pirahesh, V. Raman, R. Sidle, O. Sidorkin, A.
Storm, Y. Tian, and P. Tözün. Wildfire: Concurrent Blazing Data Ingest and Analytics. In SIGMOD, pages 2077–2080, 2016.
[22]P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution. In CIDR, 2005.

[23]E. A. Brewer. Towards Robust Distributed Systems. In PODC, pages 7–, 2000.

[24]F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A Distributed Storage System for Structured Data. In OSDI, pages 205–218, 2006.

[25]L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L. Lonergan, J. Cohen, C. Welton, Sherry, and M. Bhandarkar.

HAWQ: A Massively Parallel Processing SQL Engine in Hadoop. In SIGMOD, pages 1223–1234, 2014.

[26]F. F ärber, N. May, W. Lehner, P. Große, I. Müller, Rauhe, and J. Dees. The SAP HANA Database – An Architecture

Overview. IEEE DEBull, 35(1):28–33, 2012.

[27]S. Gray, F. Ö zcan, H. Pereyra, B. van der Linden, and A. Zubiri. IBM Big SQL 3.0: SQL-on-Hadoop without compromise.

https://public.dhe.ibm.com/common/ssi/ecm/sw/en/ sww14019usen/SWW14019USEN.PDF, 2015.

[28]A. Kemper and T. Neumann. HyPer – A Hybrid OLTP&OLAP Main Memory Database System Based on Virtual Memory

http://www.jetir.org/
http://www.aerospike.com/
http://www.alluxio.org/
https://aws.amazon.com/s3/
http://cassandra.apache.org/
http://hadoop.apache.org/
http://hortonworks.com/apache/hdfs/
https://hbase.apache.org/
https://kudu.apache.org/
https://parquet.apache.org/
http://phoenix.apache.org/
http://spark.apache.org/
https://github.com/datastax/spark-cassandra-connector
https://github.com/datastax/spark-cassandra-connector
https://cwiki.apache.org/confluence/display/Hive/Hive%2BTransactions
https://cwiki.apache.org/confluence/display/Hive/Hive%2BTransactions
http://www.memsql.com/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://www.swiftstack.com/product/openstack-swift
http://www.splicemachine.com/
https://public.dhe.ibm.com/common/ssi/ecm/sw/en/sww14019usen/SWW14019USEN.PDF
https://public.dhe.ibm.com/common/ssi/ecm/sw/en/sww14019usen/SWW14019USEN.PDF
https://public.dhe.ibm.com/common/ssi/ecm/sw/en/sww14019usen/SWW14019USEN.PDF

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 74

Snapshots. In ICDE, pages 195–206, 2011.

[29]M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht, Jacobs, I. Joshi, L.

Kuff, D. Kumar, A. Leblang, Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and

M. Yoder. Impala: A Modern, Open-Source SQL Engine for Hadoop. In CIDR, 2015.

[30]A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear. The Vertica Analytic Database: C-store 7

Years Later. PVLDB, 5(12):1790–1801, 2012.

[31]N. Mukherjee, S. Chavan, M. Colgan, D. Das, M. Gleeson, S. Hase, A. Holloway, H. Jin, J. Kamp, K. Kulkarni, T. Lahiri, J.

Loaiza, N. Macnaughton, V. Marwah, A. Mullick, A. Witkowski, J. Yan, and M. Zait. Distributed Architecture of Oracle Database

In-memory. PVLDB, 8(12):1630–1641, 2015.

[32]P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The Log-structured Merge-tree (LSM-tree). Acta Inf., 33(4):351–385, 1996.

[33]V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M.

Lohman, T. Malkemus, R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A. Storm, and L. Zhang. DB2 with BLU

Acceleration: So Much More than Just a Column Store. PVLDB, 6:1080–1091, 2013.

[34]A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive - A Petabyte Scale

Data Warehouse Using Hadoop. In ICDE, pages 996–1005, 2010.

[35]Z. Zhang. Spark-on-HBase: Dataframe Based HBase Connector. http://hortonworks.com/blog/spark-hbase-dataframe-based-

hbase-connector.

http://www.jetir.org/
http://hortonworks.com/blog/spark-hbase-dataframe-based-hbase-connector
http://hortonworks.com/blog/spark-hbase-dataframe-based-hbase-connector
http://hortonworks.com/blog/spark-hbase-dataframe-based-hbase-connector

