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Abstract : Mobile applications, various real-time analytics applications such as real-time inventory that give you 

suggestions, fraud detection, risk analysis, etc emphasize the need for distributed data management systems that can 

handle fast transactions and analytics concurrently. Different optimizations and architectural decisions in a system are 

produced by efficient processing of transactional and analytical requests. The target of this paper is a Wildfire system, 

with Hybrid Transactional and Analytical Processing (HTAP). To enable large-scale data processing with different 

types of columnar data processing and complex analytical requests, this Wildfire leverages the Spark ecosystem in 

order to enable fast transactions and analytics concurrently. 

 
Index Terms – Big Data Platforms, Data Processing, Transactions, OLTP Interface. 

 

I. INTRODUCTION 
The classical and strongest ACID properties are ensured by the relational DBMSs with its transactions. From the way they evolved, the 

literature defined about the isolation of concurrent transactions on which how to achieve strict serializability and also how to achieve consistent 

commits of distributed transactions with Two-Phase Commit Protocol. 

In many transactions, the point queries facilitate the accessing of individual rows not with just a primary key by applying many indexes on any 

column. 

For speeding long-running queries Structured Query Language (SQL) from traditional DBMSs and robust optimization of it,  and multi-node 

parallelism technologies for more complex analytics queries are implementing. With a sophisticated exploitation of compression, multi-threaded 

parallelism, large main memories, and especially column stores, DBMSs have accelerated analytics queries more recently [22, 26, 30, 33]. 

  Replication of data is often provided as an afterthought for disaster recovery, with availability usually limited to those 

nodes having physical connectivity to the single copy and dependent upon the coordinator of Two-Phase Commit being up. 

Generally, the CAP Theorem states that strict consistency makes availability very hard [23]. Scale-out beyond a few hundred nodes 

of relational DBMSs is rare,  and elasticity  is limited because data is pre-allocated to, and stored on, a pre-determined (set of) 

nodes. These weaknesses largely motivated the recent develop- ment of Big Data Platforms such as Hadoop [5]and now Spark [11], 

which were designed almost exclusively for per- forming complex and long-running analytics, such as Machine Learning,  cost-

effectively on extremely large and diverse data sets. These systems promote a much more open environment, both of functions and 

de facto standard data formats such as Parquet, allowing any function to readily access any  data without having to go through a 

centralized gate-keeper. By routinely replicating data by default, usually asynchronously (e.g., with eventual consistency 

semantics), these systems built in high availability, scale-out, and elasticity from their inception. 

These weaknesses largely motivated the recent develop- ment of Big Data Platforms such as Hadoop [5]and now Spark [11], which 

were designed almost exclusively for per- forming complex and long-running analytics, such as Machine Learning,  cost-

effectively on extremely large and diverse data sets. These systems promote a much more open environment, both of functions and 

de facto standard data formats such as Parquet, allowing any function to readily access any  data without having to go through a 

central-  ized gate-keeper. By routinely replicating data by default, usually asynchronously (e.g., with eventual consistency se- 

mantics), these systems built in high availability, scale-out, and elasticity from their inception. 

However, Big Data platforms have their own shortcomings. Transactions (especially update-in-place) and point queries are largely 

ignored in Spark, thereby relegating in- gest of data to simpler key-value stores such as Cassandra [4] and Aerospike [1]. Some of 

these stores may provide the high ingest rates required to capture data from new Inter- net of Things (IoT) applications, but to 

achieve this, have relaxed isolation levels and have embraced weaker eventual consistency of copies on independent nodes. They 

also in- dex only a primary key, limiting point queries to those that specify that key. Lastly, they have limited or no SQL func- 

tionality, which is often added as almost an afterthought (e.g., Hive [34]), with weak query optimizers. 

This paper argues that the Big Data world needstrans- actions. We present Wildfire, a design and initial prototype to bring ACID 

transactions, albeit with a weaker form of snapshot isolation, to the open analytics world of Spark. Wildfire exploits Spark for 

performing analytics by: (1) utilizing a non-proprietary storage format (Parquet), open to any reader, for all data; (2) using and 

extending Spark APIs and the Catalyst optimizer for SQL queries; and (3) automatically replicating data for high availability, scale-

out performance, and elasticity (creating an AP system). Wildfire augments these Spark hallmarks with critical features from the 

traditional DBMS world, including: (1) ACID transactions with snapshot isolation, making the latest committed data immediately 

available to analytics queries; (2) the abil ity to index any column for fast point queries; (3) exploiting recent advances for 

accelerating analytics queries by orders of magnitude, including compression on the fly, cache-aware processing, automatic creation 

and exploitation of synopses, (a form of) column-wise storage, and multi-threaded paral- lelism; and (4) enterprise-quality SQL, 

including more ro- bust optimization and time travel that permits querying his- torical data AS OF a particular time. 
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Figure 1: Wildftre Architecture. 

 

II. WILDFIRE ARCHITECTURE 
  Figure 1shows the Wildfire architecture, which has two major pieces: Spark and the Wildfire engine. Spark serves as the main 

entry point for the applications that Wildfire targets, and provides a scalable and integrated ecosystem for various types of analytics 

on big data, while the Wildfire engine accelerates the processing of application requests and enables analytics on newly-ingested 

data. 

a. Processing of requests 
All requests to Wildfire go through Spark APIs, except for a native OLTP API for the Wildfire engine, discussed later. Each request 

spawns Spark executors across a cluster of ma- chines whose nodes depend upon the type of that request. The majority of the nodes 

in the cluster execute only analyt- ical requests, and require only commodity server hardware (the solid arrows in Figure 1show the  

request  and  data flow in these nodes). Other, beefier nodes, with faster local persistent storage (SSDs or, soon, NVRAM) and 

more cores for increased parallelism, handle concurrently both transac- tions and analytical queries on the recent data from those 

transactions (the dashed arrows in Figure 1show the re- quest and data flow in these nodes). 

Wildfire’s engine is based on columnar processing that is similar to DB2 with BLU Acceleration [33]. Each Wild-  fire engine 

instance daemon is connected to a Spark Execu- tor. There are two types of engine daemons: stateful and stateless. The stateful 

daemons handle both transaction and analytics requests against the latest data. The stateless dae- mons, on the other hand, execute 

only analytics queries on the (much more voluminous) older data. 

To speed ingest through parallelism, non-static tables in the system are sharded across nodes handling transactions based upon a 

prefix of a primary (single-column or composite) key. A table shard is also assigned to (a configurable number of) multiple nodes 

for higher availability. A state- ful engine daemon on a node is responsible for the ingest, update, and lookup operations on the data 

assigned to that node, whereas the stateless engine daemons can read any data that is in the shared file system for analytical queries. 

A distributed coordination system (e.g., ZooKeeper 1 ) man- ages the meta-information related to sharding and replica- tion, and a 

catalog (e.g., HCatalog 2 ) maintains the schema information for each table. 

Wildfire openly allows any external reader to read data ingested by the Wildfire engine using Spark APIs without involving 

the Wildfire engine component, but that reader will be unable to see the latest transactional data stored on the stateful 

daemons. Further, to satisfy applications that need huge ingest rates, Wildfire provides a native API for the engine, where the 

insert requests to each table are kept as prepared statements after their initial invocation. 

b. Processing and storage of data 
  Figure 2 illustrates the data life cycle in a shard replica  in Wildfire. Each transaction in the Wildfire engine keeps its un-comitted 

changes in a transaction-local side-log com- posed of one or more log blocks. Each log block can contain transactions for only one 

table. At commit time, the trans- action appends its side-log to the log, which is kept both in memory and persisted on disk (SSD or 

NVRAM). In addi- tion, this side-log is copied to each of the other nodes that  is responsible for maintaining a replica of that 

shard’s data, for availability. 

While any replica of a shard can process any transactional request for that shard, one of the replicas periodically in- vokes a 

grooming operation. This operation scans the log and groups together the log blocks from multiple (commit- ted) transactions 

for the same table, creating larger groomed blocks containing data only from a single table. In addition to merging log blocks, 

grooming also performs some data cleansing that will be discussed in detail later. The groomed data blocks are then flushed to 

both the local SSD for fast reads and a distributed file system (e.g., HDFS [6], S3 [3],Swift [16],so that other nodes can also 

access them. After a grooming pass, the groomer prunes the log records it has successfully groomed. 
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Figure 2: Data lifecycle in Wildftre. 
 

The input source for queries in the Wildfire engine is both the (shared) groomed data and the (shard-local) log.  In other words, 

each engine instance can read any groomed data regardless of its shard, but can only access log records for shards for which it is 

responsible. To avoid potential du- plicates in this input stream while scanning both the log and groomed blocks, the engine checks 

the last groomed point in the log at the beginning of each query. The isolation level for queries who demand the latest data (dark 

red arrows in 

  Figure 1) is snapshot isolation. 

All tuples of a table are stored using the Parquet [9]for- mat in both log and groomed blocks. Therefore, each block contains all 

column values for a set of rows of the table,  and the values  are stored in column-major format within  the block, facilitating 

column-store-like access to just those pages containing columns referenced in a query, for larger, paginated blocks. The Parquet 

layout and local compression allow the data blocks to be fully self-contained. 

 

III.     TRANSACTIONS 
Despite adopting columnar data procesing, the Wildfire engine is not just a query processor or accelerator for the Spark 

ecosystem. It is also designed to support transactions with inserts, updates, and deletes. 

Wildfire targets high availability across multiple data cen- ters, with tolerance for network partitioning. Therefore, it cannot give 

consistency semantics in which each read sees all prior writes [23]. Existing highly available systems such as 

Cassandra [4]normally provide either eventual consistency or forced multi-server quorum reads. 

However, eventual consistency is painful for the application- writer. Consider two successive queries from an application. The first 

query may get results that are missed in the second query if it is routed to an alternate server that lags behind. Quorum reads, which 

perform redundant reads from multi- ple servers, are a reasonable alternative. However, they are not only infeasible for OLAP-style 

transactions that  may read thousands, millions, or billions of records, but also costly for single-key fetch queries. 

Wildfire targets both high availability  and ACID, which   is infeasible. Therefore, Wildfire adopts last-writer-wins (LWW) 

semantics for concurrent updates to the same key  and snapshot isolation of quorum-readable content for queries, without having to 

read the data from a quorum of replicas    to satisfy a query. The remainder of this section describes some of the design choices and 

methods to reach this goal. 

a. Writes: Inserts, Updates, and Deletes 
It is impractical to send changes directly to the shared file system, which is typically append-only and optimized for large 

blocks. Therefore, as Section 2describes, Wild- fire first writes (and persists at commit) the transactional changes to local 

storage. Only a background grooming pro- cess propagates them to the shared file system, in a batched fashion. 

The logs for a table in Wildfire are sharded across pro- cessing nodes using a key composed of one or more columns of the table. In 

addition, for high availability, these shard logs are replicated to multiple nodes (a minimum of 3). The writes (inserts,  updates,  

deletes) of a transaction are sent  to any node that contains a shard replica. At commit, the changes for the transaction are applied to 

the local logs and then replicated. 

i. Replication 
In the case of synchronous replication (at least to a quo- rum) Wildfire faces the danger of losing availability. Asyn- chronous 

replication, on the other hand, might suffer from inconsistency – e.g., a query that immediately follows a  transaction may not see 

that transaction’s writes if it is routed to a different node than the transaction. 

In Wildfire, every (write) transaction performs a status- check query at the end: one that simply waits until the writes of that 

transaction  to  be  replicated  to  a  quorum  of nodes. Similarly, the read-only queries return quorum- replicated data. 

At a poorly connected node, the status-check may time out. To sustain high-availability in this case, Wildfire re- turns to the client 

with a pending message, indicating that the transactions position (in the serializable order of trans- actions) is unknown until a 

future point in time when the status-check succeeds. This behavior mimics the best prac- tice in the financial industry, where the 

ATM transactions are allowed to proceed during network disconnection, with a disclaimer that the order of transactions are going 

to be resolved subsequently. 

This delayed-commit semantics does come at a high cost: one cannot check integrity constraints at commit. Hence, concurrent 

updates to the same key based on prior values are going to suffer from the lost-update problem. Wildfire resolves this by adopting 

the LWW semantics as mentioned above. 

In the case where a client receives a time-out message, Wildfire offers a SyncWrite option. If the client confirms that their 

writes are idempotent, Wildfire automatically reis- sues any timed-out writes on other nodes, until they succeed. The kind of 

applications that require AP from CAP, tend to have writes that are idempotent. If a non-idempotent write times out or the 

client connection breaks, the client is left hanging, as there is no easy way to figure out whether that write has succeeded. 
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ii. Shards 
Each table must have  a primary key that is made up of    a subset of the columns of the sharding key. This is sligtly different than 

the constraint of having a prefix of the primary key as the sharding key like systems like Megastore [20]and 

Cassandra [4]adopt. Inserts of pre-existing keys are treated as updates, and deletes are treated as inserts of tombstones. Any update, 

delete, or insert results in just an insert of a new version, with a begin and end timestamp (beginTS and endTS. The beginTS is 

just the commit timestamp, and the endTS is the beginTS of the next version of that key. 

Wildfire’s client-side logic accepts and partitions bulk in- sert requests based on the sharding key to determine the tar- get 

shard(s). These partitioned inserts are sent to a replica for each shard with some affinity, but with the ability to automatically 

fail-over to another replica to handle error scenarios. The partitioned inserts are cached by the client library until a SyncWrite is 

requested and successful. Should a failure occur in this phase, the client library will re-submit the cached partitioned inserts. 

Should memory pressure oc- cur at the client, the library itself will trigger a SyncWrite request. 
 

iii. Conflict Resolution 
Each shard has a designated groomer that runs at one      of its replica nodes. The groomer merges,  in time order,  the logs from 

each replica of the shard and creates Parquet- format files in the shared file system for the data modifica- tions. Indexes on the 

primary keys are built during grooming to detect multiple versions of the same data at a later phase called post-grooming. This 

periodic post-grooming operation performs conflict resolution where it sets the endTS of the previous version to the beginTS of 

next version for records with the same primary key. This post-grooming operation also replaces the files in the shared file system as 

needed. Queries which find unresolved duplicates would then know to perform special handing by looking up these keys to de- 

termine the correct version to use, thus implementing LWW semantics. 

Each instance of Wildfire tracks the log replication points for all replicas and computes a current high-water mark of the data that is 

quorum-visible. Queries are then able to achieve quorum-consistent reads without accessing the same data at multiple replicas. 

The beginTS is a local wall-clock time of the commit:  but changes from different nodes can replicate at arbitrary speeds. So 

changes are ordered within each grooming cycle by a commit timestamp, but we  use the groom cycle time  as a high-order 

timestamp for the set of groomed changes, thus eliminating any need to re-order late replicated changes back into the already 

groomed ordering of history. This, in  a sense, pushes the effective commit time to the quorum readable time. 

b. Reads 
The log (local or replicated) has only committed trans- actional changes. However, queries (including the grooming query) need to 

see all quorum-written changes. So we use a high-water mark of quorum-visible portions of the replicated logs. Depending on the 

currency of data needed by queries, groomed data may be all that is needed. However, certain classes of queries read the log entry 

changes along with the groomed data. The grooming process itself reads only the log entry changes to perform its processing. 

Snapshot isolation needs a system-generated predicate: beginTS snapshotTS < endTS. The snapshotTS is usually the transaction 

start time, but can be changed to allow time- travel. The begin timestamp, as stated earlier, is set when the record is committed and 

then updated again at grooming time to pre-pend the groom timestamp. The end timestamp is initialized to infinity, except in the 

case of deletes, and left  

unchanged at groom time unless more than one occurrence of the primary key occurs in the grooming cycle, in which case the 

earlier entries will have their end timestamps set to the begin timestamps of their replacements. 
This does not address changes to the end timestamp due to updates of older rows that had already been groomed ear- lier. Those are 

addressed in two parts. First, the periodic post-grooming process will rewrite blocks, filling in the end timestamp based on key. To 

handle changes in tail blocks, Wildfire maintains a hash table tracking key versions (be- ginTS and rowID). Queries probe this hash 

table if the end timestamp is infinity for a record. 

IV.     ANALYTICS 
Apache Spark provides an extensive ecosystem for big data analytics, streaming, machine learning, and graph pro- cessing. We 

integrate Wildfire into the Spark environment in order to build on top of its existing capabilities. Wild-  fire enhances Spark with 

the missing support for OLTP and improves its OLAP performance. 

In this section, we describe the major extensions of Wild- fire  to  Spark:     (1)  the  new  OLTP  interface  OLTPContext, 

(2) extensions to the Spark Catalyst optimizer and the ex- isting OLAP SQLContext to enable the push-down of queries into the 

Wildfire engine, and (3) our support of user-defined function (UDF) and user-defined aggregate functions (UDAF) in Wildfire. 

4.1 New Interface for OLTP 
In order to provide HTAP functionality, we need support for OLTP operations, i.e., point queries and inserts or up- serts. However, 

this functionality is currently missing in the Spark ecosystem. Wildfire builds a new OLTP interface that can be used by Spark 

applications, called OLTPContext.  For now, this interface is kept separate from Spark’s existing OLAP  interface,  SQLContext.   

The  two  interfaces  may  be unified in future versions of Spark. Our OLTP API plays very well with the different components of 

Spark. For exam- ple, we can use it together with Spark Streaming for high- rate inserts from streaming data sources. We can also 

use this OLTP API together with Spark SQL for HTAP. 

The  OLTPContext  accesses  and  caches  the  coordination service to retrieve the configuration state of the backend  Wildfire 

cluster, i.e., the set of Wildfire engines and the shards they host, as well as a reference to the catalog ser- vice. In order to route a 

transaction to the right shard, the OLTP needs to uniquely identify the shard, e.g., through  the sharding key for an insert or a 

statically evaluable pred- icate in a point query. Our initial prototype does not yet support transactions that span multiple shards, but 

plan in the future.  Once the shard is determined, the OLTPContext routes the reads and writes to the appropriate Wildfire en- 

gines that host the corresponding shared or shard replicas. The context obtains the current shard-to-node assignment from the 

coordination service.  If the OLTPContext is unable to identify the shard from the query, e.g., the point-query does not have a 

predicate on the sharding key, or does not identify a unique shard, or cannot be statically evaluated, the OLTPContext broadcasts 

point queries to all Wildfire en- gines. This, however, comes at a higher cost and breaks transactional isolation in our current 

prototype, as it may result in a cross-shard transaction. 

 

http://www.jetir.org/


© 2018 JETIR  August 2018, Volume 5, Issue 8                                      www.jetir.org  (ISSN-2349-5162) 

JETIR1808651 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 71 

 

  
 

Figure 3:  Bottom-up build up of the pushdown plan 

 
We  also  handle  node  failures  in  the  OLTPContext.    For example, if a node that is responsible for the shard of a number of rows 

that are being inserted fails, we try to re- insert those rows to one of the replica nodes and update the host-to-shard mapping. It can 

push down even more complex operations such as joins and partial aggregations, as well as user-defined functions and aggregates. 

These extensions to the Data Sources API and the Cat- alyst optimizer are general and not just for Wildfire. Ar- bitrarily complex 

queries can be pushed down to any data source that implements our API extensions, as this approach allows the source to decide 

what plans can be pushed down. With this general pushdown approach to a remote source, we essentially enable Spark to be a 

federation engine for big data systems. 

Extension to Data Sources API. 
To allow more complex pushdown, we introduce a new type  of  data  source,  called  PushDownSource,  to  the  Data 

Sources API. The API provided by  PushDownSource allows a data source to express its pushdown ability to the Catalyst optimizer. 

Given a Spark logical plan (a tree-structured logical query plan), a data source can express, through this API, whether the 

entire logical plan can be executed in the source or not. If a plan cannot be executed in the source, this API further provides a way 

to examine whether individual expressions inside a plan can be supported by the source, which is important to allow partial push-

downs (details will be provided below). 

Extension to Catalyst Optimizer. 
We also extend Spark’s Catalyst optimizer to enable the pushdown analysis for a data source that implements the PushDownSource 

API. More specifically, we add a number of rewrite rules to the logical optimization phase of the query. 

Extensions to Spark SQL for OLAP 
For OLAP, we want users to be able to query Wildfire tables using the same Spark SQL interfaces (either via Spark DataFrames 

or SQL) as they do for regular Spark tables. Moreover, we want to be able to use both Wildfire tables and normal Spark tables 

in the same query, e.g., joining a Wildfire table with a JSON table. 

We achieve this seamless integration by extending both Spark SQL’s Data Sources API and the Catalyst query opti- mizer. The 

Data Sources API provides a way to access data sources outside Spark through Spark SQL in an easy and pluggable manner. 

Spark’s Catalyst optimizer currently is able to push down projection and filtering operations to the data sources, if supported by the 

sources, through the Data Sources API. However, our Wildfire engines provide more advanced query capabilities for Spark SQL to 

leverage. We 

optimization. Each rule rewrites a query plan to a logically equivalent plan, in the usual way. Together, they identify and build up 

the pushdown plan in a bottom up fashion,     as shown in Figure 3. We start with leaf nodes that are  PushDownSource.  They 

represent the base tables in the tar- get data source. Obviously, they can be pushed down to the source.  Then we look at the parent 

of each PushDownSource. By using the extended API, Catalyst can know whether the subquery represented by the parent can be 

pushed down to the source or not. If so, we construct a new leaf node to replace the parent, and track the pushdown plan inside the 

leaf node. In case of a join, we push down the join only if both children are pushed down already, and the join itself can be pushed 

down (e.g., colocated joins). This process is continued until a fixed point is reached (no change to the logical plan occurs). 

In a number of cases, we cannot push down the entire subquery represented by a tree node, but we  can rewrite  the plan so that 

part of the subquery can be pushed down. 

Partial Aggregation Pushdown: As many data sources, including Wildfire, do not have the ability to transfer data among themselves 

for query processing, aggregate functions cannot be fully pushed down. In this case, we rewrite an aggregation plan into a partial 

aggregation followed by a global aggregation, and push down the partial aggregation. For example, to support count(.) for 

Wildfire, it is rewritten into a  partial  count(.) that is executed on all the Wildfire engines, followed by a global sum(.)  that is 

carried out in Spark. 
 

Partial Projection Pushdown: For projection, if the list of column expressions contains one or more expressions not pushdown-able, 

we split the projection plan into two consecutive projections. The first is pushed down to the source with the basic columns needed 

for all the expressions, and the second is executed in Spark for evaluating the actual expressions. 
 

Partial Predicate Pushdown: If a conjunctive predicate contains one or more sub-predicates that cannot be pushed down, we only 

push down the pushable sub- predicates, and form a new selection node with the non-pushable sub-predicates. 

Using OLTPContext and SQLContext for HTAP 
Applications that require HTAP instantiate both the new OLTPContext and the SQLContext in the Spark driver.  This allows them 

to submit analytics queries through our ex- tended SQLContext, and point queries as well as inserts via the OLTPContext to 

Wildfire.  An OLAP query is assigned a snapshot that is based on the required maximum tolerable staleness of the data. If that 

staleness is shorter than the grooming interval (typically just a second or two, but this is configurable), the query is either delayed 

until grooming has caught up to the snapshot, or the query must be sent to the Wildfire engine nodes to be processed from the logs 

on the node-local SSDs. Unless shard (partition) elimination can be applied, the query must be sent to all Wildfire engine nodes. 

Therefore, analytic queries with such short staleness requirements are more expensive and may negatively affect the transaction 

throughput of pure OLTP queries. This, however, is no different from traditional database systems for which admittance control is 
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used to strike a balance between the resource usage of analytical and transactional queries. OLAP queries that can tolerate a 

staleness that is longer than Wildfire’s grooming interval can be processed more inexpensively with data read from the shared file 

sys- tem by any nodes. 

User-defined Functions and Aggregates 
A key feature in Spark and Spark SQL is the extensibility from the end-user’s perspective. User-defined scalar func- tions (UDFs) 

and user-defined aggregate function (UDAF) can be defined and used in queries. The use  of  anonymous functions (lambdas) in 

Java 8 and Scala makes this extremely powerful while being easy to use. It is therefore crucial for Wildfire to also support UDFs 

and UDAFs and to be able to execute them inside the engine. Scalar UDFs can be used in the select and the where clause of 

queries. When 
 

 
 

Figure 4: Current Wildfire prototype. 
used inside aggregate functions and predicates, or are user- defined aggregation function themselves, they can reduce the amount of 

data returned to Spark. UDFs can contain logic that is hard to express in SQL (e.g., decision trees, machine learning models used 

for scoring, or even deep learning mod- els). Wildfire supports UDFs and UDAF in Java bytecode from Java and Scala and executes 

them in embedded Java virtual machines that run inside the Wildfire engines. Since the Wildfire engines are implemented in a 

native code envi- ronment, it will be easier to add hardware accelerators such as GPUs and FPGAs in order to run UDFs with even 

more complex models. 

 

V.    PROTOTYPE 
We presented the initial prototype of Wildfire in SIGMOD 2016 [21]. Since then we enhanced this prototype toward our end goal 

(depicted in Figure 1). Figure 5shows the current state of Wildfire. 

SparkSQL is the entry point for analytical applications, and a Scala-based interface is used for OLTP applications (currently just 

ingest requests). As mentioned in Section 2.1, Wildfire also provides a native API for the engine, which was used during the 

SIGMOD demo for ingest requests as our scala API for OLTP was primitive then. ZooKeeper is used as the coordination service 

and HCatalog is the primary source for catalog information. The engine and client layer contact ZooKeeper for sharding 

information. The  engine also contacts ZooKeeper to learn about the state of replicas and the last groom points for each shard. The 

fast local stor- age for the engine, where heavy ingest requests are handled concurrently with analytical requests, is SSDs. 

Grooming writes the data blocks both to SSDs and the shared file sys- tem. The blocks in SSDs are evicted based on an LRU 

policy (groom time) and the space budget of the SSDs. The shared distributed storage system used in the prototype is an object 

store with Alluxio [2]serving as a cache on top. 

We are currently working on exposing the OLTP interface of the Wildfire engine to Spark, so that applications running inside Spark 

can have access to the full HTAP functionality. In addition, we are extending the Wildfire engine to support more complex data 

types (e.g., JSON, arrays). Lastly, we are improving the indexes in Wildfire to support fast point queries on both primary and 

secondary indexes, and working on enabling more complex transactions. 

VI.     RELATED WORK 
Over the last decade, although several SQL processing systems have been developed, especially in open-source [18], none process 

both analytical as well as transactional work- loads.  Most of these systems, including Hive  [34],  Impala 

[29], HAWQ   [25], Big SQL  [27], and Spark SQL  [19], have 

all focused on analytics over HDFS data initially. Since HDFS and Hadoop’s focus was batch processing, data was also ingested in 

batches. For applications that required up- dates and faster insertion rates, noSQL systems provided an alternative.   HBase  [7, 

35]and Cassandra [12, 4]are two of the most popular noSQL systems for this purpose. How- ever, this 

led to lambda architectures where transactional systems were separate from analytical systems. The pur- pose of Wildfire is to 

provide a single unified platform for both transactional and analytical processing. 

Over the years, some of these initial systems, like Hive and Impala, also included support for updates. As of very recently, Hive 

supports ACID transactions [13], but with several limitations, such as not supporting explicit transac- tion begin, commit, and 

rollback statements. The integra- tion of Impala [29]with the storage manager Kudu [8], on the other hand, allows the SQL-on-

Hadoop engine to handle updates and deletes reducing the pitfalls of using HDFS and HBase for transactions and analytics, 

respectively. HAWQ [25]supports snapshot isolation, as it uses PostgreSQL as its underlying processing engine. It only allows 

appends, and transactions can only commit on the master node, a central fixed node. Hence, these systems are not meant to support  

a high volume of transactions but rather batch inserts and slowly changing dimensions that are typical in classical data warehouse 

workloads. 
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There are other systems, like Splice Machine [17]and Phoenix [10]that allow updates and transactions. These systems provide 

SQL processing for data stored in HBase tables, and as a result rely on HBase for the updates. Splice 

Machine even supports ACID transactions.  However, these 

systems do not provide fast OLAP capabilities because the scans over HBase tables are quite slow. Most often, the data is 

transformed into a more analytical-friendly format, such as Parquet, and processed by one of the other SQL engines, such as Hive, 

Impala, or SparkSQL. This data copying is both error-prone and costly, and also it does not allow ana- lytics to work on the latest 

data. 

Oracle [31], SAP HANA [26], and MemSQL [14]are among the systems that support hybrid analytical and trans- actional 

workloads as stand-alone engines, but they use dif- ferent formats for data ingestion and analytics. As a re-  sult, the latest 

committed data is not available to analytical queries right away, or else accessing the latest data requires a costly join between row-

store and column-store tables. In Wildfire, by using a single data format for both data in- gestion as well as analytics, we enable 

analysis on the latest committed data right away. HyPer [28]also supports hybrid workloads using multi-version concurrency 

control, and ex- ploiting machine code generation with LLVM for very opti- mized single-threaded performance. However, it is not 

clear how HyPer behaves in a large-scale distributed setting. 

The data lifecycle of Wildfire going from memory to SS- D/NVM and to a shared file system is inspired by the de- sign for data 

movements and compactions in systems like BigTable [24]and MyRocks [15]. However, Wildfire is not based on LSM-trees [32]. 

VII.     CONCLUSIONS 
We presented the Wildfire system, which is designed to handle high-volume transactions while executing complex analytics queries 

concurrently in a large-scale distributed big data platform. The analytical  queries  are  issued  via the Spark SQL API, and a Spark 

Executor is connected to Wildfire’s columnar engine on each node. The connection to Spark exposes the analytics capabilities of 

Wildfire to  the entire Spark ecosystem, including graph processing and machine learning. Wildfire also extends Spark’s Catalyst 

optimizer to perform complex push-down analysis, and generates compensation plans for the remaining portions of the analytics 

queries that cannot be pushed down into Wildfire’s columnar engine. 
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