FUZZY PRE GENERALIZED SEMI-CLOSED SETS

M. M. SALASDEENA¹ AND M. SENTAMILSELVI²

¹Research Scholar in Mathematics, Vivekanandha college of arts and sciences for women (Autonomous) Tiruchengode Namakkal (Dt), Tamilnadu, India.
²Assistant professor Department of Mathematics, Vivekanandha college of arts and sciences for women (Autonomous) Tiruchengode Namakkal (Dt), Tamilnadu, India.

Abstract : In this paper, we introduced a new classes of sets called fuzzy pre-generalized semi-closed sets in fuzzy topological spaces is introduced and investigate their properties. As an application of this set we also introduces the new kinds of separation axioms namely, F_{pgs}- $T_{1/2}$-space F_{pgs}-continuity and F_{pgs}- irresolute mappings. Fuzzy pre generalized semi $T_{1/2}$ fuzzy pre generalized semi $T_{3/4}$ spaces and fuzzy semi $T_{1/3}$ and characterized them.

Key words and phrases : Fuzzy pre generalized semi-closed sets, Fuzzy pre generalized semi-continuity, Fuzzy pre generalized semi- irresoluteness, Fuzzy semi $T_{1/2}$-space.

INTRODUCTION :

We define a new class of fuzzy pre generalized sets namely, fuzzy semi-closed sets and investigate their properties. The fts X denote a fuzzy topological spaces (X, τ). Fuzzy sets in X will be denoted by $(\nu, \eta, \lambda, \mu)$. The operators can be denoted by fuzzy closure and fuzzy interior. The concept of fuzzy semi-preopen sets and introduced fuzzy pre generalized $T_{1/2}$ spaces, F_{pgs} continuity and F_{pgs}- irresoluteness. The aim of this paper is to introduce the notion of fuzzy pre generalized semi-closed sets, an alternative generalization of fuzzy semi open set in fuzzy topological spaces. We introduce a class of fuzzy topological spaces, called $F_{pgs} T_{1/2}$- spaces and obtain some of its characterizations. Further, we also introduce F_{pgs}-continuity and F_{pgs}- irresoluteness.

1.1 Definition : A fuzzy set A of (X, τ) is called
1) Fuzzy semi open (shortly, F_{s}- open) if $A \leq \text{Cl}(\text{Int}(A))$ and a fuzzy semi closed (shortly, F_{s}-closed) if $\text{Int}(\text{Cl}(A)) \leq A$.
2) Fuzzy pre open (shortly, F_{p}-open) if $A \leq \text{Int}(\text{Cl}(A))$ and a fuzzy pre closed (shortly, F_{p}-closed) if $\text{Cl}(\text{Int}(A)) \leq A$.
3) Fuzzy pre semi open (shortly, F_{ps}-open) if $A \leq \text{Int}(\text{Cl}(A))$ and a fuzzy pre semi closed (shortly F_{ps}-closed) if $\text{Cl}(\text{Int}(A)) \leq A$.

1.2 Definition : A fuzzy set ν in fuzzt topological space (X, τ) is called
1) Fuzzy generalized closed set if $\text{Cl}(\nu) \leq \eta$ whenever $\nu \leq \eta$ and η is fuzzy open. We shortly denoted it as F_{g}-closed.
2) Fuzzy pre- generalized closed set if $\text{pCl}(\nu) \leq \eta$ whenever $\nu \leq \eta$ and ν is fuzzy semi open. We shortly denoted it as F_{pg}-closed set.
3) Fuzzy generalized semi- closed set if $s\text{Cl}(\nu) \leq \mu$ whenever $\nu \leq \eta$ and η is fuzzy open. We shortly denoted it as F_{pgs}-closed set.
4) Fuzzy pre generalized semi- closed set if $s\text{pCl}(\nu) \leq \eta$ whenever $\nu \leq \eta$ and η is fuzzy open. We shortly denoted it as F_{pgs}-closed set.

1.3 Definition : A fuzzy topological space (X, τ) is said to be a
1) Fuzzy - $T_{1/2}$-space if every F_{g}-closed set is fuzzy closed.
2) Fuzzy semi- $T_{1/2}$-space if every F_{pg}-closed set is fuzzy semi-closed.
3) Fuzzy pre- $T_{1/2}$-space if every F_{pgs}-closed set is fuzzy pre closed.

FUZZY SEMI – CLOSED SETS

2.1 Definition : Let η be a fuzzy set in a fuzzy topological spaces (X, τ). Then ν is called a fuzzy semi-closed set X if $\text{spCl}(\eta) \leq \nu$, whenever $\eta \leq \nu$ and ν is a F_{g}-open set in X.

2.2 Proposition : Every fuzzy semi pre-closed set in a fuzzy topological space (X, τ) is fuzzy open set.

Proof : Let η be a fuzzy semi pre-closed set in a fuzzy topological space (X, τ). Suppose that $\eta \leq \nu$ and ν is a fuzzy generalized-open set in X. Since $\text{spCl}(\eta) = \eta$, it follows that $\text{spCl}(\eta) = \eta \leq \nu$. Hence, η is fuzzy semi-closed in X. The reverse implication in the above proposition is not true as seen in the following example.

Example : Consider the fuzzy topological space (X, τ), where $X = \{a,b,c\}$ and
$$\tau = \{0,1,\eta = \frac{0.9}{a} + \frac{0.2}{b} + \frac{1}{c}, \nu = \frac{0.9}{a} + \frac{0.2}{b} + \frac{0}{c}\}.$$
Fuzzy closed sets in X are...
So the family of fuzzy generalized-closed sets is
\[\{0,1, \eta, v, \alpha_1 + \alpha_2 + \alpha_3 \text{ either } \alpha_1 > 0.8 \text{ or } \alpha_2 > 0.2 \} \]
Hence the family of generalized open sets is
\[\{0,1, \eta, v, \alpha_1 + \alpha_2 + \alpha_3 \text{ either } \alpha_1 < 0.2 \text{ or } \alpha_2 < 0.8 \} \]
Now
\[v = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \]
is not a fuzzy semi-pre closed set in X, for \(\text{Int } \lambda = v \) and so, \(\text{Int Cl Int } \lambda = \text{Int Cl } v = 1 > \lambda \).
Moreover, \(\lambda \) is fuzzy pre semi-closed. Indeed, let \(\lambda \leq \mu \) and \(\mu \) be fuzzy generalized open in X. Then \(\mu = 1 \) and \(\text{spCl } \lambda \leq \mu \).
From the succeeding two examples, it can be seen that fuzzy pre-semi-closedness is independent from fuzzy generalized semi-closedness.

Example:
Consider the fuzzy topological space \((X, \tau)\), where \(X = \{a, b, c\}\) and \(\tau = \{0,1,v = \frac{0.2}{a} + \frac{0.3}{b} + \frac{0}{c}\}\).

Fuzzy closed sets are:
\[0,1,v = \frac{0.2}{a} + \frac{0.9}{b} + \frac{1}{c} \]
So the family of fuzzy generalized closed sets in X is
\[\{0,1, \eta, v, \alpha_1 + \alpha_2 + \alpha_3 \text{ either } 0.7 < \alpha_1 \text{ or } 0.3 < \alpha_2 \} \]
Hence the family of fuzzy generalized-open sets is
\[\{0,1, \eta, v, \alpha_1 + \alpha_2 + \alpha_3 \text{ either } \alpha_1 < 0.2 \text{ or } \alpha_2 < 0.9 \} \]
Now,
\[\lambda = \frac{0.7}{a} + \frac{0.2}{b} + \frac{0}{c} \]
is a fuzzy semi-pre-closed set in X, for if \(\lambda \leq \mu \) and \(\mu \) is fuzzy generalized open set in X. Then \(\mu = 1 \). Hence, \(\text{spCl } \lambda \leq \mu \). But, \(\text{Int Cl } \lambda = 1, \lambda \leq v \) and \(\text{Int Cl } \lambda = 1 > v \), so \(\lambda \) is not a fuzzy generalized closed set in X.

Example:
Consider the fuzzy topological space \((X, \tau)\) : \(X = \{a, b, c\}\) and \(\tau = \{0,1,v = \frac{0}{a} + \frac{1}{b} + \frac{1.2}{c}\}\).

Fuzzy closed sets are:
\[0,1,v = \frac{1}{a} + \frac{0}{b} + \frac{0}{c} \]
So the family of fuzzy generalized closed sets in X is
\[\{0,1, \alpha_1 + \alpha_2 + \alpha_3 \text{ either } 1 > \alpha_1 \text{ or } 0 > \alpha_2 \} \]
Hence the family of fuzzy generalized-open sets in X is
\[\{0,1, \eta, v, \alpha_1 + \alpha_2 + \alpha_3 \text{ either } \alpha_1 < 1 \text{ or } \alpha_2 < 1 \} \]
Now
\[\lambda = \frac{1}{a} + \frac{1}{b} + \frac{0}{c} \]
is not a fuzzy semi-pre-closed set in X; if \(\lambda \leq v \) and \(\lambda \) is fuzzy generalized open set, but, \(\text{Int Cl } \lambda = 1, \text{ and hence, } \text{spCl } \lambda = 1 > \lambda \). But, \(\lambda \) is fuzzy generalized closed set in X and hence it is fuzzy generalized semi-closed.

2.3 Proposition:
Let \(\eta \) be a fuzzy set in a fuzzy topological spaces \((X, \tau)\). Then the following are equivalent:

i. \(\eta \) is fuzzy open and fuzzy pre semi-closed.

ii. \(\eta \) is fuzzy open and \(F_{\text{pgs}} \)-closed.

Proof:
Let \(\eta \) be fuzzy open and fuzzy pre semi-closed. Then, by known proposition,

"Every fuzzy pre semi-closed set in a fuzzy topological space \((X, \tau)\) is \(F_{\text{pgs}} \)-closed."

Proof:
Let \(\lambda \) be a fuzzy pre semi-closed set in a fuzzy topological space \((X, \tau)\). Suppose that \(\lambda \leq v \) and \(\nu \) is a fuzzy open set in X. Then, \(\text{psCl } \lambda \leq v \) and \(\nu \) is \(F_\nu \)-open in X and hence \(\lambda \) is fuzzy pre generalized semi-closed in X.

Hence, it is fuzzy pre generalized semi-closed.

2.3 Proposition:
Let \(\eta \) be a fuzzy pre-semi-closed set in a fuzzy topological space \((X, \tau)\). If \(\eta \) is a fuzzy set in X such that \(\eta \leq \nu \leq \text{spCl } \nu \), then \(\nu \) is also fuzzy pre-semi-closed.

Proof:
Let \(\nu \leq \mu \) and \(\mu \) be fuzzy generalized-open in X. Then \(\eta \leq \lambda \) and since \(\mu \) is fuzzy pre semi-closed. It is clear that, \(\text{psCl } \nu \leq \text{sp Cl } (\text{sp Cl } \eta) = \text{sp Cl } \nu \leq \nu \). Hence, \(\nu \) is fuzzy pre-semi-closed.
FUZZY PRE GENERALIZED SEMI- CLOSED SETS

3.1 Definition :
A fuzzy set A of (X, τ) is called fuzzy pre generalized semi- closed (shortly, F_{pgs}-closed) if $psCl(v) \leq \eta$, whenever $v \leq \eta$ and η is F_{τ}- open in X.
By fuzzy pre generalized semi- closed (X, τ), we denote the family of all fuzzy pre generalized semi- closed sets of fuzzy topological space X.

Example :
Let $X = \{a, b\}$ and $Y = \{x, y, z\}$ and fuzzy sets A, B, E, H, K and M be defined by :

$A(a) = 0.3$, $A(b) = 0.4$, $B(a) = 0.4$, $B(b) = 0.5$:

$E(a) = 0.3$, $E(b) = 0.7$, $H(a) = 0.7$, $H(b) = 0.6$:

$K(x) = 0.1$, $K(y) = 0.2$, $K(z) = 0.7$:

$M(x) = 0.9$, $M(y) = 0.2$, $M(z) = 0.5$.

Let $\tau = \{0, A, 1\}$, $\sigma = \{0, E, 1\}$ and $\gamma = \{0, K, 1\}$. Then B is F_{pgs}- closed in (X, τ) but not F_{gs}- closed ; M is F_{pgs}- closed in (Y, γ) but not F_{gs}- closed because, If we consider a fuzzy set $T(x) = 0.9$, $T(y) = 0.2$, $T(z) = 0.7$, then clearly $sCl(M) \not\subseteq T$ where as $M \leq T$ and T is fuzzy semi open in (Y, γ) and H is F_{pgs}- closed in (X, σ) but neither F_{pgs}-closed because, If we consider a fuzzy set $L(a) = 0.8$, $L(b) = 0.7$, then clearly $sCl(H) \not\subseteq L$ where as $H \leq L$ and L is fuzzy semiopen in (X, σ) nor F_{sp}- closed because $Int(\{Cl(Int(H))\}) \not\subseteq H$.

3.2 Theorem :
If A is fuzzy semi open and F_{pgs}- closed in (X, τ), then A is a F_{ps}- closed in (X, τ).

Proof :
Since $A \leq A$ and A is fuzzy semi open and F_{pgs}- closed, then $psCl(A) \leq A$. Since $A \leq psCl(A)$, we have $A = psCl(A)$ and thus A is a F_{ps}- closed set in X.

3.3 Theorem :
If A is a F_{pgs}- closed set of (X, τ) and $A \leq B \leq psCl(A)$, then B is a F_{pgs}- closed set of (X, τ).

Proof :
Let B be a F_{τ}- open set of (X, τ) such that $B \leq H$. Then $A \leq H$. Since A is F_{pgs}- closed, it follows that $spCl(A) \leq H$. Now, $B \leq psCl(A)$ implies $psCl(B) \leq psCl(psCl(A)) = psCl(A)$. Thus, $psCl(B) \leq H$. This proves that B is also a F_{pgs}- closed set of (X, τ).

3.4 Definition :
A fuzzy set A of (X, τ) is called fuzzy pre generalized semi-open (shortly, F_{pgs}- open) iff $(1 - A)$ is F_{pgs}- closed set in X. That is , A is F_{pgs}- open iff $E \leq sp Int(A)$ whenever $E \leq A$ and E is a F_{τ}- closed set in X.

3.5 Theorem :
Fuzzy pre semi- open (X, τ) \leq fuzzy pre generalized semi- open (X, τ).

Proof :
Let A any fuzzy pre semi- open set in X. Then, $1 - A$ is fuzzy pre semi- closed and hence, fuzzy pre generalized semi- closed. This implies that A is fuzzy pre generalized semi- open. Hence, B is fuzzy pre semi- open (X, τ) \leq fuzzy pre generalized semi open (X, τ).

3.6 Theorem :
Let A be fuzzy pre generalized semi- open in X and $ps Int(A) \leq B \leq A$, then B is fuzzy pre generalized semi- open.

Proof :
Suppose A is F_{pgs}- open in X and $ps Int(A) \leq B \leq A$. Then $1 - A$ is F_{pgs}- closed and $1 - A \leq 1 - B \leq psCl(1 - A)$. Then $1 - A$ is F_{pgs}- closed and $1 - A \leq 1 - B \leq psCl(1 - A)$. Then $1 - B$ is F_{pgs}- closed set. Hence, B is F_{pgs}- open set in X.

FUZZY PRE GENERALIZED SEMI- IRRESOLUTE MAPPINGS :

4.1 Theorem :
Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be F_{pgs}- irresolute, then f is F_{pgs}- continuous.

Proof :
Proof is immediate as every fuzzy closed set is F_{pgs}- closed and f is F_{pgs}- irresolute map.

4.2 Theorem :
Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be fuzzy irresolute and fuzzy semi- closed. Then for every F_{pgs}- closed set A of X, $f(A)$ is a F_{pgs}- closed in Y.

Proof :
Let A be a F_{pgs}- closed set of X. Let B be a fuzzy semi open set of Y containing $f(A)$. Since f is fuzzy irresolute, $f^{-1}(V)$ is a fuzzy semi open set of X. As $A \leq f^{-1}(V)$ and A is a F_{pgs}- closed in X, then $psCl(A) \leq f^{-1}(V)$ implies that $f(psCl(A)) \leq V$. Since f is fuzzy semi pre-closed, then $f(psCl(A)) = psCl\left(f(psCl(A)) \right)$.

Then, $psCl(f(A)) \leq psCl\left(f(psCl(A)) \right) = f(psCl(A)) \leq V$.

Therefore, $f(A)$ is a F_{pgs}- closed set in Y.
FUZZY PRE- SEMI- $T_{1/2}$ SPACES :

5.1 Proposition :
Every fuzzy pre semi- $T_{1/2}$ space is a fuzzy pre semi- $T_{1/3}$ space.

Proof :
Let (X, τ) be a fuzzy pre semi- $T_{1/2}$ space and μ be a F_{pgs^*} closed set in (X, τ). Then μ is fuzzy pre semi- closed. Then, (X, τ) is a fuzzy semi- $T_{1/3}$ space.

5.2 Proposition :
Every fuzzy pre semi- $T_{3/4}$ space is a fuzzy pre semi- $T_{1/2}$ space.

Proof :
Let (X, τ) be a fuzzy pre semi- $T_{3/4}$ space and ν be a fuzzy pre semi- closed set in (X, τ). Then, ν is fuzzy pre closed. Then, (X, τ) is a fuzzy pre semi- $T_{1/2}$ space. Converse of the above proposition is not true as seen in the following example.

Example :
Let (X, τ) be a fuzzy topological space, where $\tau = \{0, 1, \nu_1 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}, \nu_2 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}, \nu_3 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\}$. Fuzzy closed sets in (X, τ) are

$$0, 1, \nu' = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}, \nu' = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}, \nu' = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$

If η is fuzzy generalized-closed then $\eta \leq \nu$ implies $Cl \eta \leq \nu$ whenever ν is fuzzy open. Thus, fuzzy generalized-closed sets in (X, τ) are :

$$0, 1, \nu' = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}, \nu' = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}, \nu' = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

Where $\alpha_3 \neq 0$. So, the family of fuzzy generalized-open sets in (X, τ) is

$$\{0, 1, \alpha_1 + \alpha_2 + \alpha_3 \text{ where } \alpha_i \neq 1\}.$$

It is enough to prove that, if η is not fuzzy semi-pre-closed then it is not fuzzy semi-closed and there is a fuzzy pre-semi-closed set which is not pre-closed. Let $\eta \neq 0$ be a fuzzy set in X. Then,

$$Int \eta = \begin{cases} v_1, & v_2, \text{ Cl Int } \eta = \begin{cases} v'_2, & v'_3, \text{ and Int Cl Int } \eta = \begin{cases} v_4, & v_2, \text{ 1}, & 1, \text{ and } \frac{\alpha_1 + \alpha_2 + \alpha_3}{a} \end{cases} \end{cases}$$

So, η is not fuzzy semi-pre-closed if $v_2 \leq \eta$. In that case, η is also not fuzzy semi-pre-closed. For η is fuzzy generalized-open and $\eta \leq \eta$. But $sp Cl \eta \geq \eta \forall Int Cl Int \nu = 1 > \eta$. Thus X is a pre-semi-$T_{1/2}$ space.

$$\nu = 0 + \frac{0}{a} + \frac{0}{b} + \frac{0}{c}$$

Is a fuzzy semi-pre-closed. Hence it is fuzzy pre-semi-closed but it is not fuzzy pre-closed, as $Cl Int \nu \neq \nu$.

CONCLUSION :
In this paper, by the introduction of fuzzy pre semi- closed sets, we have equivalences of fuzzy spaces namely, fuzzy pre semi- $T_{1/3}$ space, pre semi- $T_{3/4}$ space and fuzzy pre semi- $T_{1/2}$ space.

REFERENCES :

