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Abstract : This paper considers a new class of sets called semi regular weakly open sets (briefly srw-open) are introduced and studied in
topological spaces. A subset G of topological spaces X is said to be semi regular weakly open set, if y < sint(4), whenevery < Aandy is
rw- closed set in X. The new class strictly lies between semi open sets, arw-open set and gs-open sets in topological spaces. Also, as
applications, using some properties of srw-open sets and srw-closed sets and their properties respectively.
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I. INTRODUTION

Levine [7] introduced generalized open sets, regular open sets in topological spaces respectively, then regular weakly open sets,
generalized semi closed sets, generalized a-closed sets and a-generalized closed sets semi open sets, a-regular w-closed sets, pgrw- closed sets
and semi-regular weakly closed sets have been introduced and studied by Benchalli.S.S and Wali.R.S[2],Arya S.P. and Nour T.M.[1], Maki [7]
and Levine [7] respectively

We introduce and study the semi-regular weakly open sets, semi-regular weakly neighborhood and operators in topological spaces and
obtain some of their properties.

I1. PRELIMINARIES
Throughout this paper X and Y represent the topological spaces on which no separation axioms are assumed unless otherwise
mentioned. For a subset A of topological spaces X, cl(A) and int(4) denote the closure of A and interior of A respectively. Let X/A denotes the
complement of 4 in X. Now, we recall the following definitions.
2.1 Definition
A subset A of a topological space X is called
i.  Regular open, if 2 = int(cl(4)) and regular closed if cl(int(1)) = A.
ii. Pre-open, if A € int(cl(2)) and pre-closed if cl(int(2)) € A.
iii. Semi open, if 1 € cl(int(1)) and semi-closed if int(cl(1)) € A.
iv.  a-open, if 2  int(cl(int(2))) and a-closed if int (int(cl(2))) < 2.

v.  Semipre open, if 2 € cl(int(cl(2))) and semi pre closed if int (cl(int(/l))) c A
Vi. m-open, if A is a finite union of regular open sets.
2.2 Definition
A subset A of a fuzzy topological space X is called
i Generalized closed, if cl(1) € p whenever A € y and p is open in X.
ii. Semi-generalized closed, if scl(1) S p whenever A € p and p is semi open in X.
iii. Generalized semi- closed, if scl(4) € u whenever 1 € u and u is open in X.

iv. a-generalized closed, if acl(1) € pu whenever 4 € p and p is open in X.
V. Generalized semi pre-closed, if spcl(4) S p whenever A € u and p is open in X.
Vi. Regular generalized closed, if cl(1) € u whenever A € p and u is regular open in X.
vii. Weakly closed, if cl(1) S u whenever A € p and u is semi open in X.
viii. Regular weakly closed, if cl(4) € u whenever A < u and u is regular semi open in X.
iX. a-regular weakly closed, if acl(1) € u whenever A < p and u is rw-open set in X.

The complements of all closed sets are their respective open sets in the same topological spaces X.
The semi-pre-closure (resp. semi-closure, resp. pre-closure, resp. a —closure) of a subset A of X is the intersection of all semi-pre-closed
(resp. Semi-closed, resp. pre-closed, resp. a- closed) sets containing A and is denoted by (spcl(A) (resp. scl(1), resp. pcl(2), resp. cl(1)).
2.3 Definition
A subset A of a space X is said to be semi regular weakly closed set, if scl(1) S u whenever A € p and p is rw-open set in X.
We denote the family of all srw -closed sets, srw -open sets, arw -open sets, and semi-open sets of X by
SRW (X)), SRWO(X),aRWO(X) and SO (X) respectively.
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2.4 Lemma
i For a subset A of X, arw-closure of A is denoted by arw — cl(4) and defined as arw — cl(1) =Ny c X: 1 c y € aRWC(X).
ii. For a subset A of X, semi-closure of 4 is denoted by scl(A) and defined as scl(1) =Ny c X: A c y € SC(X).
iii. For a subset A of X, gs-closure of 1 is denoted by gs — cl(1) and defined as gs — cl(1) =Ny c X: A c y € GSC(X).
I1l. SEMI REGULAR WEAKLY OPEN SETS
In this section, we introduce and study srw-open sets in topological spaces and obtain some of their basic properties.
3.1 Definition
A subset A of X is called semi regular weakly open set, if X \ A is srw-closed set in X. The family of all semi regular weakly open sets
in X is denoted by SRWO (X).
3.2 Theorem
If a subset A of space X is arw-open, then it is srw-open in X but not conversely.
Proof:
Let A be a arw-open set in a space X. Then X \ A is a arw-closed set. By theorem 3.2 X \ A is srw-closed. There A is a srw-open set
in X.
The converse of the above theorem need not be true as shown in example 3.3
3.3 Example
Let X = {a,b,c,d} with T = {X,0,{a}, {b, c},{a, b, c}}. Then {a, d} and {b, c, d} are srw- open sets in X but it is not arw-open sets in

X.
3.4 Theorem
If a subset A of space X is semi-open, then it is semi-open in X but converse is not true.
Proof:
Let A be a semi-open set in a space X. Then X \ 1 is a semi-closed set. By Theorem 3.6 of, X \ 1 is srw-closed. Therefore A is a srw-
open set in X.
The converse of the above theorem need not be true as shown in example 3.5
3.5 Example

Let X = {a, b, c,d} with T = {X, ®,{a}, {b, c},{a, b, c}}. then {b} and {c} are srw-open sets in X but not semi-open sets in X.
3.6 Corollary

It is evident that every open set is semi-open set but not conversely. By Theorem 3.4 every semi-open set is srw-open set in X but not
conversely and hence every open set is srw-open set in X.
3.7 Corollary

It is evident that every a-open set is arw-open set is srw-open set but not conversely and hence every a-open set is srw-open set but
not conversely.

3.8 Corollary

It is evident that every regular open set is open, but not conversely. By corollary 3.7, every open set is srw-open set but conversely and
hence every regular open set is srw-open set in X.
3.9 Corollary

It is evident that every 6-open set is open but not conversely. By corollary 3.7, every open set is srw-open set but not conversely and
hence every 6-open set is srw-open set in X.
3.10 Theorem

If a subset A of a space X is srw-open, then it isa gs-open set in X.
Proof:

Let A be a srw-open set in X, then X \ 1is a srw-closed set in X. by Theorem 3.4 of, every srw-closed set is gs-closed set in X.
(i.e) X \ 1isa gs-closed set in X. Therefore 1 is a gs-open set in X.

The converse of the above theorem need not be true as shown in example 3.11.
3.11 Example

Let X = {a, b, c,d} with T = {X, ®,{a}, {b, c},{a, b, c}}. Then {a, c} and {a, d} are gs-open set in X but not srw-open sets in X.
3.12 Theorem

If a subset A of a space X is srw-open, then it is a gs-open set in X, but not conversely.
Proof:

Let A be a srw-open set in X, then X \ 1is a srw-closed set in X. By theorem 3.10 of, every srw-closed set is sp-closed set in X.
(i.e) X \ 1 sp-closed set in X. Therefore A is a sp-open set in X.

The converse of the above theorem need not be true as shown in example 3.13.
3.13 Example

Let X = {a, b, c,d} with T = {X, ®,{a}, {b, c},{a, b, c}}. Then {a, b} and {c, d} are gsp-open sets in X but not srw-open sets in X.

The concepts of g-open, w-open, ag-open and wa-open sets are independent with the concept of srw-open set as shown in the
following example 3.14.
3.14 Example

Let X = {a,b,c,d} with T = {X, ®,{a}, {b, c},{a, b, c}}. then {a, d} is a srw-open, however it can be verified that it is not g-open, w-
open, g-open and w-open set. Also, the set {a, b} and {a, c} are g-open, w-open, ag-open and wa-open set but not srw-open set in X.
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3.15 Remark

Union and intersection of two srw-open sets need not be srw-open sets as shown in the following example 3.16
3.16 Example

Let X ={a,b,c,d} with topology t={X,0,{a},{b,c},{a b, c}}. Then SRWO(X) =
{X,0,{a},{b},{c},{a,d},{b,c},{a b,c},{b,c, d}}let A= {b}, B= {a, d} and C= {b, c, d}. Here A and B are srw-open sets but A U B = {a, b, d}
is not srw-open. Also B and C are srw-open sets but B N C = {d} is not srw-open set in X.
3.17 Theorem

If 2 € X is srw-closed, then scl(4) \ A is srw-open set in X.
Proof:

If A € X is srw-closed and let y be a rw-closed set such thaty < scl(1) \ 4. Then by Theorem 3.19 of, y = @ that implies y <
sint(scl(1) \ 1) and Theorem 3.17 scl(1) \ A is srw-open set in X.
3.18 Theorem

A subset A of a topological space X is srw-open if and only if y € sint(A) whenever y is rw-closed and y < A.

Proof:

Let y € 1 is srw-closed and let y be a rw-closed set and y € A. Then X\ A € X \ y where X \ y is rw-open. Since X \ A is srw-
closed, scl(X \ 1) € X \ y and hence X \ sint(1) € X \ y that implies y € sint(1).

Conversely, suppose y € sint(1) whenever y € 4, y is rw-closed. To prove: 4 is srw- open. Suppose X \ U € A where U is rw-open.
Then X \ U < A where X \ U is rw-closed. By assumption X \ U € sint(4) that implies scl(X \ A) € U. This proves that X \ 1 is srw-closed
and hence A is srw-open set in X
3.19 Theorem

Every singleton point set in a space X is either srw-open or rw-open in X.

Proof:

Let x € X where X is a topological space. To prove: {x} is either srw-open or rw-open in X. (i.e) to prove that X \ {x} is either srw-
open or rw-open, which follows from Theorem 3.25 of, the next theorem shows that all the sets between sint(A) and A are srw-open whenever
A is srw-open.

3.20 Theorem

If sint(4) € B € A and A is a srw-open set in X, Then B is srw-open set in X.
Proof:

Let sint(A) € B < Aand A is a srw-open set. Then X\ A € X \ B € X \ sint(4) that implies X \ A € X \ B € sint(X \ 4), since
X \ A is srw-closed set, by Theorem 3.23 of, X \ B is srw-closed set. Therefore B is srw-open set in X.

3.21 Theorem

If A € X isa srw-closed, then scl(4) \ A is srw-open set in X.

Proof:

Let 4 € X is a srw-closed set and y be a rw-closed set such that y € sint(4) \ 1. By Theorem 3.19 of,y = @, so y € sint(scl(1) \ 1)
by Theorem 3.18 scl (1) \ 4 is srw-open set in X.

The converse of above theorem does not hold shown by example 3.22
3.22 Example

Let X = {a, b, c,d} with topology T = {X,®,{a},{b, c},{a, b,c}}. Then A ={c, d} then scl() = {b,c,d} and scl(2) \ 1 = {b} is an
srw-open set, but A is not an srw-closed set in X.

3.23 Theorem

If a subset A is srw-open in X and if G is rw-open in X with sint(41) U (X \ 1) € G then G=X.
Proof:

Suppose that G is an rw-open set and sint(1) U (X\1) < G. Now (X\1) S X\scl(1) n X\(X\1) implies that (X\G) S scl(X\1) N 1.
suppose A is srw-open. Since X\G is rw-closed and X\ is rw-closed, then by Theorem 3.19 of, X\G = @ and hence G=X.

The converse of the above theorem need not be true in general as shown in example 3.24.

3.24 Example
Let X = {a, b, c,d} with topology T = {X,®,{a},{b, c},{a b, c}}. ThenSRWO(X) = {X, ®,{a},{b},{c},{a, d},{b,c},{a b,c},{b,c,d}},
and RWO(X) = {X,0,{a},{b},{c},{d},{a b}, {b,c},{c,d}, {b,d}{a c},{a b, c}} let A={a, b, d}{a, b, d} is not an srw-open set in X.

However sint(1) vV (X \ 1) = {a,d}V{c} = {a, ¢, d}. So for some rw-open set G, such that sint(1) v (X\1) ={a, c,d} < G gives G=X but 1 is
not srw-open set in X.
3.25 Theorem
Let X be a topological space and A, B < X. If B is srw-open and sint(B) < A.then A N B is srw-open in X,
Proof:
Since B is srw-open and sint(B) € A.then sint(B) € A A B € B, then by theorem 3.20 of, A N B is srw-open set in X.
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IV. SEMI REGULAR WEAKLY NEIGHBORHOODS
4.1 Definition
Let (X, 1) be a topological space and letx € X. A subset N is said to be srw-nbd of x, if and only if there exists a srw-open set G such
thatx € G € N.
4.2 Definition
i.  Asubset N of X isasrw-nbd of 1 € X in topological space (X, 1), if there exists an srw-open set G suchthat A € G € N.
ii. The collection of all srw-nbd of x € X is called srw-nbd system at x € X and shall be denoted by srw-N(x).
4.3 Theorem
Every neighborhood N of x € X is a srw-nbd of x.
Proof:
Let N be neighborhood of pointx € X. To prove that N is a srw-nbd of x. by definition of neighborhood, there exists an open set G such
that x € G © N. Hence N is srw-nbd of x.
4.4 Remark
In general, a srw-nbd N of x in X, as shown from example 4.5
4.5 Example
Let X = {a, b, c,d} with topology T = {X,®,{a},{b, c},{a b, c}}. then SRWO(X) = {X, ®,{a},{b},{c} {a,d},{b,c},{a b, c} {b,c d}}
the set {a, b, d} is srw-nbd of the point b, since the srw-open set {b} is such that b € {b} c {a, b, d}. However, the set {a, b, d} is not a
neighborhood of the point b, since no open set G exists such that b € {b} c {a, b, d}.
4.6 Theorem
If a subset N of a space X is srw-open and then N is srw-nbd of each of its points.
Proof:
Suppose N is srw-fuzzy open. Let x € N we claim that N is a srw-nbd of x. For N is a srw-open set such that b € N c N. since x is an
arbitrary point of N, it follows that N is a srw-nbd of each of its points.
The converse of the above theorem is not true in general as seen from the following example 4.7
4.7 Example
Let X = {a, b, ¢, d} with topology 7 = {X, @,{a},{b,c},{a,b, c}}. then SRWO(X) = {X, @,{a},{b},{c},{a,d},{b,c},{a,b,c},{b,c, d}}.
The set {a, c} is srw-nbd of the point a, since the srw-open set {a} is such thata € {a} < {a, c}. Also the set {a, c} is a srw-nbd of the
point c, since the srw-open set {c} is such that ¢ € {c} < {a, c} (i.e). {a, c} is a srw-nbd of each of its points. However the set {a, c} is not a srw-
open set in X.
4.8 Theorem
Let X be a topological spaces. If F is a srw-closed set subset of X and x € (X\A), then there exists a srw-nbd N of x such that N ny =
@.
Proof:
Let y be a srw-closed subset of X and x € (X\y). then (X\y) is a srw-open set of X. By theorem 4.6, (X \ y) contains a srw-nbd of
each of its points. Hence there exists a srw-nbd N of x suchthat N ny = @.
4.9 Theorem
Let X is a topological space and for eachx € X, let srw-N(x) is the collection of all srw-nbds of x, then we have the following results.
i Vx € X,srw — N(x) # Q.
ii. Xesrw—N(x)>x€N.
iii. Nesrw—N(x)AndN c M = M € srw — N(x).
iv. N € srw — N(x) = 3IM € srw — N(y) forevery y € M.

i Since X is an srw-open set, it is a srw-nhd of every x € X. Hence there exists at least one srw-nbd(X) for each x € X. Hence srw —
N(x) # @ forevery x € X.
ii. If N € srw — N(x), then N is a srw-nhd of x. So, by definition of srw- nhd x € X.
iii. let N € srw — N(x) and N c M then there is a srw —open set in G such that x € G € N. SinceN c M, x € G c M and so M is a srw —
nbd of x. HenceM € srw — N (x).
iv. If N € srw — N(x), then there exists an srw —open set M is an srw —open set, it is a srw — nhd of each of its points. Therefore N €
srw — N(y) fory € M.
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